Professional Spotlight – Dr. Chris Harrod and Chilean Kelp Mapping

Professional Spotlight

The Professional Spotlight series is a deep dive into the global BioBase community where we highlight the unique ways sonar driven mapping is assisting research, conservation and sustainability.

The BioBase team sat down with Dr. Chris Harrod for a look into how he uses BioBase. Chris (from the UK) is a full professor of Fish and Aquatic Ecology at the University of Antofagasta in Antofagasta, Chile. He does a mixture of research, teaching, and administration tasks but our interest with him was the applied research techniques for which he was using BioBase. His research is focused on a macroalgae called kelp (aka seaweed) and its importance as a source of food/energy to fish and invertebrates in the coastal zone. He is also interested in how kelp can function as habitat, food, an anchor of sediment and even slow the turbulent waters of the Pacific Ocean.

Continue reading “Professional Spotlight – Dr. Chris Harrod and Chilean Kelp Mapping”

Mapping seagrass with BioBase and saving Florida Manatees

Guest Blog by Robert M. Baker, CPG, PG (a) and Penelope R. Baker (b)

(a) Professional geologist at RMBAKER LLC and Navico BioBase Ambassador

(b) Stanford University student, Ecology and Evolutionary Biology, Wildlife Photographer

BioBase is a cloud software that directly supports the preservation of our aquatic environments. Words like preservation and conservation directly imply things like careful planning, measuring and monitoring, treatment and rehabilitation – actionable strategies for the good of animals, plants and natural resources where BioBase can play an important role. BioBase offers an opportunity to observe natural systems, like seagrasses, not easily seen otherwise and does so effortlessly and affordably.

Continue reading “Mapping seagrass with BioBase and saving Florida Manatees”

Social mapping of Australian bays and conservation of Fish Aggregating Bryozoans

Guest Blog By Dr. Adrian Flynn(a) and Dr. Travis Dutka(b)

(a) Marine Ecologist and Director at Fathom Pacific

(b) Senior Lecturer at La Trobe University Department of Ecology, Environment, and Evolution.

The waters of Western Port in southeastern Australia are a recreational fishing haven and hidden beneath its turbid waters, a unique fragile seafloor community has been newly described.  Here, bryozoans, skeleton-forming filter-feeding organisms also known as ‘lace corals’, form expansive areas of reef that support a high diversity and abundance of macroinvertebrates important to snapper and other prized recreational fish species.

Figure 1: Underwater imagery of the bryozoan reefs revealed remarkable biogenic reef structures with abundant invertebrate life surrounded by large areas of bare sediment.

Continue reading “Social mapping of Australian bays and conservation of Fish Aggregating Bryozoans”

What sonar do I need for BioBase mapping?

What kind of sonar hardware should I buy for BioBase Mapping is the most common question we are asked. Admittedly, continual change in technology, products, and features can be intimidating and sometimes confusing. With this blog, we focus on what you need to know to get started with BioBase

Continue reading “What sonar do I need for BioBase mapping?”

EcoSound New Feature: Advanced Processing Preferences

The rollout of the new BioBase EcoSound vegetation and bottom hardness algorithm required substantial refactoring of our core processing code. Read about the changes here. While we were under the hood, we took the opportunity to implement some enhancements that our frequent BioBase users should appreciate. NOTE: Users still select the unit (Imperial or Metric) in the primary user profile area of their BioBase account (My Account).

Continue reading “EcoSound New Feature: Advanced Processing Preferences”

New BioBase Viewer Released

Ok, it’s a bit overdue. But better late than never! BioBase customers will now see an updated and enhanced viewer for their EcoSound and EcoSat.  No longer will users have to struggle to get their map to fit within the little square box of the old viewer with a Bing zoom level that either zoomed too close and cut off parts of the waterbody, or too far to see detail. Below we show you a few screenshots of the major improvements. You can see for yourself by logging into your own account or clicking the Log into DEMO button on the home page of biobasemaps.com, finding a waterbody of interest, and click on the Analyze/Edit button.

Continue reading “New BioBase Viewer Released”

BioBase: tips and lessons learned

In the 8+ years BioBase has been in service, we’ve seen our share of sonar logs and maps (both good and bad).  We’ve learned some things and improved back-end processes that have resulted in you getting better maps processed faster. But we’ve also learned from you, our users, about strategies and techniques that result in better outcomes, and what to avoid.  Here are eight of those lessons learned:

1. Good transducer installation is critical

You could be the most experienced hydrographer in the world and execute the perfect survey design, but your map will be mostly worthless if your transducer is not securely attached to your boat or is slanted at an angle. We’ve devoted a fair amount to this topic in previous blogs, so we won’t dwell on it here. The two key take aways are: 1) ensure the transducer is installed straight in all directions keeping in mind the slant of the hull in the water fully loaded.  Replicate that tilt with your tongue jack when installing your transducer. 2) Install the transducer where the flow of water is smooth and laminar over the transducer face at all speeds. If you lose your transducer signal as the boat speeds up, you probably have an issue with cavitation (water turbulence) around the transducer face. Adjust the transducer height (sometimes only a very small amount) or move it away from rivets or anything else near the hull that could cause cavitation. One of the benefits of working with consumer devices like Lowrance and Simrad is that there is a wealth of online self-help resources and service centers that can help you install your transducer correctly.  A simple Google Search “Lowrance Transducer Installation” will turn up all the resources you need.  This one from Lowrance is one of our favorites.  If you have multiple survey boats and want to make your unit portable, I strongly recommend purchasing and installing multiple transducers on all of your boats rather than a portable transducer bracket.  In the grand scheme of things, consumer-sonar transducers are cheap and the consistent results you will get from a firmly mounted transducer is worth it!

5fadb-fig1_ducer_angle
Figure 1. Example of a slanted transducer and what affect it has on BioBase maps.  A simple Google Search of “transducer installation” will turn up many very good self help resources about how to properly install your transducer.

Continue reading “BioBase: tips and lessons learned”

New EcoSat Feature: Reclassify individual vegetation polygons

EcoSat is a first of its kind semi-automated satellite imagery processing tool that’s part of the BioBase cloud mapping platform (Figures 1 and 2).  EcoSat is helping several US states and countries map and monitor the status of shallow growing aquatic vegetation and benthic habitats.  In this blog, we discuss several tips and tricks about how practitioners can maximize the accuracy and precision of their EcoSat vegetation maps.

Continue reading “New EcoSat Feature: Reclassify individual vegetation polygons”

Determining dredging needs in lakes, ponds, and Arizona’s aqueduct system!

By Ray Valley

Aquatic Biologist and BioBase Product Expert

One of BioBase’s strengths is its simplicity. You don’t need an advanced engineering degree in hydrography to make a high quality bathymetric map with an off-the-shelf sonar device. If you have your transducer installed correctly, settings correct on your Lowrance, and achieve good coverage on your waterbody of interest, then BioBase’s EcoSound algorithm will produce a very precise, high quality bathymetric map output within minutes of upload to biobasemaps.com. The speed and ease of bathymetric mapping wins the day for many of our users, but perhaps even more valuable, is the benchmark you are setting for an unknown day in the future when something has changed on the lake and you need to have some “historical” information to understand how much change has taken place

Use Case: Monitoring Sedimentation

One of our most frequently asked questions by new users is “will BioBase measure sediment thickness or the depth of the sludge?” This was a source of a recent blog. Interestingly, the answer is different depending on how long our customers have been using BioBase. For the user who has no prior information about how deep the lake or pond is supposed to be, BioBase may not provide detailed enough information about the actual thickness of the sediment (sediment depth is correlated with EcoSound hardness but it is highly variable; see this blog for further details).  However, for the pond management consultant who happened to “BioBase” a client’s pond in 2013 while she happened to be on site for another matter and is now hearing from the client in 2022 that his pond is “filling in,” the answer about whether BioBase can tell him how much sediment has filled in is a most definite yes! For this pond consultant, it was a most fortuitous (or perhaps prudent?) thing that she decided to voluntarily map her clients pond in 2013.  Now with a 2022 survey, she can precisely quantify exactly how much sediment has accumulated and where over the 7 years by doing a simple subtraction of the depth and water volume between surveys and comparing maps.  The comparison of maps can be done a fancy GIS way like described in this blog. Or a quick and easy way through BioBase (see examples below).

Continue reading “Determining dredging needs in lakes, ponds, and Arizona’s aqueduct system!”

Mapping Hidden Channels with Genesis Live

River channel thalwegs (the line of lowest elevation within a valley or watercourse) are often dynamic, and sometimes hidden features of large river systems.  Especially low slope or impounded systems.  The thalweg is a critical geomorphological feature of river and reservoir systems and affects everything from sediment transport, to fisheries habitat, to algae or invasive plant control.

Thus a good bathymetric contour map is a necessary pre-requisite for effective river and reservoir management.  Here, we walk you through how to use new real time technologies (C-MAP’s Genesis Live) to produce smooth, precise, and accurate maps of hidden river thalwegs all within one trip to the site and with automated post-processing with BioBase’s EcoSound.  We’ll use an annotated image gallery to take you through this process.

Continue reading “Mapping Hidden Channels with Genesis Live”

Translate »
%d bloggers like this: