Eli Kersh started a consulting firm, e-limnology, in 2016 and used it to provide services for customers as a side business where his current employer had gaps. He primarily provided mapping for customers and his business took off. Eventually he found a niche and e-limnology transformed into its current form Lake Tech. Lake Tech is on the forefront of new products and technologies for lake management. He is always trying to have a practical approach to lake management and rely heavily on new technologies that demonstrate value and ultimately simplifies lake management to make it more accessible to the public.
What is BioBase? BioBase is composed of two different products, EcoSound and EcoSat. Ecosat processes satellite imagery to create shallow vegetation and benthic habitat maps. While, EcoSound uses off-the-shelf sonar technology and automatic cloud processing to create professional bathymetry, bottom composition, and aquatic vegetation maps. BioBase removes the labor intensive and high cost elements of acquiring high quality data very quickly so you can focus your efforts on aquatic resource management.
Fisheries Scientist Jim Lyons from the UK’s Environment Agency has been in action over the last few months introducing Yorkshire Fisheries Officers to the benefits of the BioBase system. Following two days of survey work on a couple of gravel pit fisheries in the area the team received a report less than a week later. Mike Lee from the local team and the angling clubs who manage the waters, were very impressed with the technique and the report generated. They have come away with a host of ideas about how to further use Lowrance Fish Finders and the Biobase System across their catchment in both river and Stillwater fisheries.
Further Mr. Lyons, recently presented to aquatic plant specialists from the Environment Agency, Natural England and Natural Resources Wales at Preston Montford Field Studies centre as part of the relaunch of the aquatic plant specialist’s network.
Area specialist are responsible for the technical lead for aquatic plant survey delivery within their Area, ensuring that all aquatic plant surveyors are suitably trained and have the relevant support to deliver their surveys. The specialists also play a key role in underpinning the delivery of the quality assurance programme.
Mr. Lyons talked about ‘Using acoustics and cloud-based technology to monitor aquatic weed.’He shared with the group the benefits of using BioBase to inform weed management programmes. Enthusiastic feedback from the group has provided a number of potential new applications for this technology from across the Department of Environment, Food, and Rural Affairs (DEFRA) family organisations present.
Density of aquatic vegetation (% Biovolume) in Sheltered Lagoon, London Area UK.
We are grateful to the aquatic research community who continue to verify and validate Consumer Sonar Technologies (Lowrance) and BioBase automated mapping platform to produce scientifically valid outputs that benefit aquatic conservation. We are excited to see the recent publication of research out of the University of New Brunswick that evaluated the accuracy and precision of Lowrance and BioBase’s EcoSound depth and vegetation outputs. The research is published in the open access journal Diversity and can be downloaded here. Below is the abstract
Abstract
The development of consumer hydroacoustic systems continues to advance, enabling the use of low-cost methods for professional mapping purposes. Information describing habitat characteristics produced with a combination of low-cost commercial echosounder (Lowrance HDS) and a cloud-based automated data processing tool (BioBase EcoSound) was tested. The combination frequently underestimated water depth, with a mean absolute error of 0.17 ± 0.13 m (avg ± 1SD). The average EcoSound bottom hardness value was high (0.37–0.5) for all the substrate types found in the study area and could not be used to differentiate between the substrate size classes that varied from silt to bedrock. Overall, the bottom hardness value is not informative in an alluvial river bed setting where the majority of the substrate is composed of hard sands, gravels, and stones. EcoSound separated vegetation presence/absence with 85–100% accuracy and assigned vegetation height (EcoSound biovolume) correctly in 55% of instances but often overestimated it in other instances. It was most accurate when the vegetation canopy was ≤25% or >75% of the water column. Overall, as a low-cost, easy-to-use application EcoSound offers rapid data collection and allows users with no specialized skill requirements to make more detailed bathymetry and vegetation maps than those typically available for many rivers, lakes, and estuaries.
I frequently get inquiries from current and prospective BioBase users about the accuracy of consumer-grade Lowrance GPS and whether survey-grade 3rd party receivers capable of differential correction (DGPS) or receiving positions from multiple satellite constellations (Global Navigation Satellite System – GNSS) could be used with Lowrance and processed with BioBase.
The first question about accuracy prompted a test in March of 2013 with a Lowrance HDS tested side-by-side with a Trimble GeoXH. I was pleased to find less than 1m deviation on average from post-processed Trimble DGPS positions. One meter accuracy and precision is typically sufficient for most boat-based mapping applications. Still, prerequisites for some projects require DGPS, and there are a number of BioBase users who have and still would prefer to have DGPS generated positions to use when logging trips. Thus, I was interested in exploring the capabilities of networking positions from a third-party receiver into a Lowrance HDS.
River channel thalwegs (the line of lowest elevation within a valley or watercourse) are often dynamic, and sometimes hidden features of large river systems. Especially low slope or impounded systems. The thalweg is a critical geomorphological feature of river and reservoir systems and affects everything from sediment transport, to fisheries habitat, to algae or invasive plant control.
Thus a good bathymetric contour map is a necessary pre-requisite for effective river and reservoir management. Here, we walk you through how to use new real time technologies (C-MAP’s Genesis Live) to produce smooth, precise, and accurate maps of hidden river thalwegs all within one trip to the site and with automated post-processing with BioBase’s EcoSound. We’ll use an annotated image gallery to take you through this process.
Thanks to advances in physical, chemical and biological technologies and funding that are focused on reducing sedimentation or muck depth in waterways, many water resource practitioners are eager to determine how much sediment is in a waterway of interest and how much could be removed. As such, we frequently are asked: “Will BioBase tell you how deep the sediment is?”