By Dr. Ian J. Winfield and Joey van Rijn
The Arctic charr (Salvelinus alpinus) is well appreciated as an important fisheries species in many northern areas of the world. In addition, it is equally important to evolutionary biologists because of this species’ frequent development of ‘morphs’ or ‘types’ and their bearing on our understanding of mechanisms of speciation (Figure 1). In the U.K., this fascinating fish is also recognised as having great nature conservation value.
 |
Figure 1. A female (top) and male (bottom) Arctic charr from Windermere, U.K. Photo courtesy of the Center for Ecology and Hydrology) |
Windermere is England’s largest lake and has been at the forefront of several areas of Arctic charr research for many decades, with the notable exception of studies of their spawning grounds (Figure 2). Despite their long appreciated significance for the coexistence of autumn- and spring-spawning Arctic charr types, local spawning grounds have not been studied in any detail since their original brief description in the 1960s. At that time, laborious and spatially-limited direct observations by divers showed that spawning requires the availability of gravel or other hard bottom habitat. New information on these critical areas is needed by ecologists and evolutionary biologists and, more urgently, by fisheries and conservation organisations responsible for the management of Windermere.
 |
Figure 2. Breathtaking view of Windermere’s north basin; home to several spawning populations of Arctic charr. Photo courtesy of Dr. Ian Winfield. |
We are currently using the newly developed bottom hardness capability of ciBioBase to survey and characterise the spawning grounds of Arctic charr in Windermere. Limited underwater video is being used for ground-truthing, but the combination of a Lowrance™ HDS-5 sounder with ciBioBase is allowing us to investigate the known spawning grounds with unprecedented speed (Figure 3). For the first time, we have been able to document in detail the bathymetry and bottom features of a long-monitored (for spawning fish) spawning ground just north of the island of North Thompson Holme in the lake’s north basin. ciBioBase is also enabling us to examine other known spawning grounds in Windermere and to expand our coverage to other potential areas previously unstudied.
 |
Figure 3. An example ciBioBase output of bottom composition on and around the Arctic charr spawning ground of North Thompson Holme in the north basin of Windermere |
The rapidity of the field component of hydroacoustic surveys is well known. ciBioBase now offers us a similarly fast method of hydroacoustic data analysis for key environmental characteristics in relation to the spawning of Arctic charr. This new approach helps us to dramatically increase our return on investment and also allows us to review results within hours of coming off the water, leading in some cases to us adapting our field plans on the basis of initial results.
Dr. Ian J Winfield is a Freshwater Ecologist at the Centre for Ecology & Hydrology in Lancaster, U.K. He has over 30 years of research experience in fish and fisheries ecology, hydroacoustics, and lake ecosystem assessment and management. Dr. Winfield sits on several regional, national and international advisory boards and is the current President of the Fisheries Society of the British Isles (FSBI).
Joey van Rijn is an undergraduate student currently following a BSc. degree course in Applied Biology at the University of Applied sciences, HAS Den Bosch, in the Netherlands. He is experienced in ecological and particularly phenological research including work on temperature-induced differences between urban and rural areas in the timing of blossoming and leaf unfolding in shrubs. He has also been involved with the development of fish ways for standing waters in the Netherlands. Joey is currently undertaking a research internship at the Centre for Ecology & Hydrology in Lancaster, U.K., where his research mainly focuses on using hydroacoustics to investigate Arctic charr spawning grounds in Windermere.
Like this:
Like Loading...