BioBase Paper Published: Accuracy and Precision of Low-Cost Echosounder and Automated Data Processing Software for Habitat Mapping in a Large River

We are grateful to the aquatic research community who continue to verify and validate Consumer Sonar Technologies (Lowrance) and BioBase automated mapping platform to produce scientifically valid outputs that benefit aquatic conservation.  We are excited to see the recent publication of research out of the University of New Brunswick that evaluated the accuracy and precision of Lowrance and BioBase’s EcoSound depth and vegetation outputs.  The research is published in the open access journal Diversity and can be downloaded here. Below is the abstract

Abstract
The development of consumer hydroacoustic systems continues to advance, enabling the use of low-cost methods for professional mapping purposes. Information describing habitat characteristics produced with a combination of low-cost commercial echosounder (Lowrance HDS) and a cloud-based automated data processing tool (BioBase EcoSound) was tested. The combination frequently underestimated water depth, with a mean absolute error of 0.17 ± 0.13 m (avg ± 1SD). The average EcoSound bottom hardness value was high (0.37–0.5) for all the substrate types found in the study area and could not be used to differentiate between the substrate size classes that varied from silt to bedrock. Overall, the bottom hardness value is not informative in an alluvial river bed setting where the majority of the substrate is composed of hard sands, gravels, and stones. EcoSound separated vegetation presence/absence with 85–100% accuracy and assigned vegetation height (EcoSound biovolume) correctly in 55% of instances but often overestimated it in other instances. It was most accurate when the vegetation canopy was ≤25% or >75% of the water column. Overall, as a low-cost, easy-to-use application EcoSound offers rapid data collection and allows users with no specialized skill requirements to make more detailed bathymetry and vegetation maps than those typically available for many rivers, lakes, and estuaries.

EcoSound vs Manual Measures Vegetation Helminen et al 2019

Depth change in lakes and ponds: easy monitoring solutions

By Ray Valley

Aquatic Biologist and BioBase Product Expert

One of BioBase’s strengths is its simplicity. You don’t need an advanced engineering degree in hydrography to make a high quality bathymetric map with an off-the-shelf sonar device. If you have your transducer installed correctly, settings correct on your Lowrance, and achieve good coverage on your waterbody of interest, then BioBase’s EcoSound algorithm will produce a very precise, high quality bathymetric map output within minutes of upload to biobasemaps.com. The speed and ease of bathymetric mapping wins the day for many of our users, but perhaps even more valuable, is the benchmark you are setting for an unknown day in the future when something has changed on the lake and you need to have some “historical” information to understand how much change has taken place

Use Case: Monitoring Sedimentation

One of our most frequently asked questions by new users is “will BioBase measure sediment thickness or the depth of the sludge?” This was a source of a recent blog. Interestingly, the answer is different depending on how long our customers have been using BioBase. For the user who has no prior information about how deep the lake or pond is supposed to be, BioBase may not provide detailed enough information about the actual thickness of the sediment (sediment depth is correlated with EcoSound hardness but it is highly variable; see this blog for further details).  However, for the pond management consultant who happened to “BioBase” a client’s pond in 2013 while she happened to be on site for another matter and is now hearing from the client in 2019 that his pond is “filling in,” the answer about whether BioBase can tell him how much sediment has filled in is a most definite yes! For this pond consultant, it was a most fortuitous (or perhaps prudent?) thing that she decided to voluntarily map her clients pond in 2013.  Now with a 2019 survey, she can precisely quantify exactly how much sediment has accumulated and where over the 7 years by doing a simple subtraction of the depth and water volume between surveys and comparing maps.  The comparison of maps can be done a fancy GIS way like described in this blog. Or a quick and easy way through BioBase (see examples below).

Continue reading “Depth change in lakes and ponds: easy monitoring solutions”

BioBase EcoSound Composition (Hardness) Algorithm: More details!

The centralized nature of BioBase (biobasemaps.com) cloud technologies coupled with sophisticated, yet low-cost consumer electronics like Lowrance or Simrad depth sounders/chartplotters have created fertile grounds for developing, testing, and verifying algorithms for typing aquatic environments.  The more users upload from a greater range of systems, the more refined algorithms can become addressing a wider range of conditions and use cases!

Early in 2014, we released a revision to our EcoSound bottom composition (hardness) algorithm that is more sensitive and robust in a greater range of depths and bottom conditions.  Many outside researchers were involved with collecting important “ground truth” information while they logged their BioBase data.  This blog not only serves to describe the new Bottom Composition algorithm, but also publish the results and acknowledge the scientists that helped with this effort.

Continue reading “BioBase EcoSound Composition (Hardness) Algorithm: More details!”

New BioBase Website including new DIY GIS tutorials

We’re excited to announce the launch of the new biobasemaps.com website! You’ll find an image-rich professional look and feel as well as information segmentation into solutions and features that speak directly to the markets we serve (Aquatic Plants, Fisheries, Water Resources, Private Ponds, Coastal).

New visitors to biobasemaps.com will also see more information about our optional GIS Services that can take your BioBase maps and tailor them to your precise needs regarding image size, contour interval, custom legend, logos, etc.

GISServices_EMULAKE200DPI
Sample custom map created by our GIS staff from BioBase EcoSound outputs. 

Dabbling in GIS? We can help you get started in QGIS

Many of you also come to us with questions about how to do more with your BioBase outputs (e.g., custom contouring, water volume calculations, spatial data analyses). To empower you to fully leverage the potential of BioBase outputs we have prepared several step-by-step QGIS tutorials to get you the outputs you require for your work. See our Support Resources page for these tutorials along with other useful self help resources

Networking 3rd Party GPS/GNSS into Lowrance

Ray Valley

Aquatic Biologist and BioBase Product Expert

I frequently get inquiries from current and prospective BioBase users about the accuracy of consumer-grade Lowrance GPS and whether survey-grade 3rd party receivers capable of differential correction (DGPS) or receiving positions from multiple satellite constellations (Global Navigation Satellite System – GNSS) could be used with Lowrance and processed with BioBase.

The first question about accuracy prompted a test in March of 2013 with a Lowrance HDS tested side-by-side with a Trimble GeoXH.  I was pleased to find less than 1m deviation on average from post-processed Trimble DGPS positions.  One meter accuracy and precision is typically sufficient for most boat-based mapping applications. Still, prerequisites for some projects require DGPS, and there are a number of BioBase users who have and still would prefer to have DGPS generated positions to use when logging trips. Thus, I was interested in exploring the capabilities of networking positions from a third-party receiver into a Lowrance HDS.

Continue reading “Networking 3rd Party GPS/GNSS into Lowrance”

Mapping Hidden Channels with Genesis Live

River channel thalwegs (the line of lowest elevation within a valley or watercourse) are often dynamic, and sometimes hidden features of large river systems.  Especially low slope or impounded systems.  The thalweg is a critical geomorphological feature of river and reservoir systems and affects everything from sediment transport, to fisheries habitat, to algae or invasive plant control.

Thus a good bathymetric contour map is a necessary pre-requisite for effective river and reservoir management.  Here, we walk you through how to use new real time technologies (C-MAP’s Genesis Live) to produce smooth, precise, and accurate maps of hidden river thalwegs all within one trip to the site and with automated post-processing with BioBase’s EcoSound.  We’ll use an annotated image gallery to take you through this process.

Continue reading “Mapping Hidden Channels with Genesis Live”

Utilization of a Web-Based Mapping Interface to Enhance Inland Fisheries Management Strategies in Texas

A. Adams, M. De Jesus, G. Cummings, and M. Farooqi

Texas Parks and Wildlife Department, Inland Fisheries

 

Abstract:

Texas Parks and Wildlife Department Inland Fisheries (TPWD IF) biologists traditionally use “stand-alone” mapping interfaces to generate 2-dimensional (2-D) aerial outputs of fish habitat and benthic surveys of aquatic systems. Preliminary work has shown promise in the use of a different method, which generates interactive 3-dimensional (3-D) high-definition (HD) outputs. During field surveys, a Lowrance© Elite 9Ti GPS unit with TotalScan™ transducer was used to generate data points along boat transects on waterbodies of interest. A waterbody “Vegetation Analysis Report” and HD maps were then generated from these data using web-based mapping algorithms through BioBase©, and ArcMap 10.3© GIS software. Aquatic vegetation biovolume, bathymetric mapping, and benthic substrate composition outputs, produced by BioBase© aided biologists in selecting best management strategies, regarding aquatic vegetation management and angler access development at three central Texas impoundments. This tool can prove valuable to fisheries managers needing a higher resolution of survey results to fine-tune management strategies. At a cost of $2,5001 US for a yearlong subscription, cost-benefit would have to be assessed by individual users, based on their needs.

Continue reading “Utilization of a Web-Based Mapping Interface to Enhance Inland Fisheries Management Strategies in Texas”

BioBase is now Metric compatible!

Ok. It’s long overdue. But, better late than never! Much to the delight of non-US users, now you can choose whether BioBase EcoSound outputs are in metric or imperial units.

AccountPage_Screenshot
Click on “My Account” to select the desired units.
ShobyLake
Metric output contoured in 0.5 m intervals. Contour detail is autodecluttered based on your zoom level in BioBase.

Wish to change units of an already processed map?

If you processed a trip with one unit setting and wish to recontour the map in a different unit, simply change the unit in our Account Profile and then go back to the trip of interest and reprocess

TripReprocessing
After selecting a new unit, reprocess the map to contour in the new units

Training EcoSat Vegetation Classifications: User tips

What is EcoSat?
EcoSat delivers a one-of-it’s-kind semi-automated cloud processing of very high resolution satellite imagery to map nearshore vegetation and coastal benthic habitats.  EcoSat uses the latest multi-spectral imagery from reputable providers such as Digital Globe (World View 2,3 and 4), Airbus Defence and Space (Pleiades), and ESA’s Sentinel program and industry standard image processing techniques.  Sophisticated Amazon Web Service cloud infrastructure rapidly processes imagery, creates reports and imagery tiles, and delivers detailed habitat maps to user’s BioBase dashboard where it can be analyzed and shared.  Average turnaround time from imagery tasking order to delivery of results is 60 days.  The rapid and standard processing methods are allowing entities like the Florida Fish and Wildlife Conservation Commission to establish regular monitoring programs for emergent vegetation.  The extremely long and expensive one-off nature of conventional remote sensing mapping projects using non-repeatable tailored techniques has prevented natural resource entities from assessing the degree that habitats are changing as a result of environmental stressors such as invasive species invasions and climate change.

Continue reading “Training EcoSat Vegetation Classifications: User tips”

BioBase Paper Published: Estimation of paddlefish (Polyodon spathula Walbaum, 1792) spawning habitat availability with consumer-grade sonar.

We’re excited to see another publication demonstrating another novel use of BioBase EcoSound technology for Fisheries Science. For a complete list of pubs see hereContact us to get a copy of any of these publications

Estimation of paddlefish (Polyodon spathula Walbaum, 1792) spawning habitat availability with consumer-grade sonar
 
Jason D. Schooley
Oklahoma Department of Wildlife Conservation
 
Ben C. Neely
Kansas Department of Wildlife, Parks, and Tourism
 
Journal of Applied Icthyology 2017
 
Summary
The paddlefish (Polyodon spathula Walbaum, 1792) is a springtime migrant that requires discrete abiotic conditions such as water temperature, discharge, and substrate composition for successful spawning and recruitment. Although population declines have prevailed throughout much of the species range, Oklahoma paddlefish are abundant and support popular recreational snag fisheries – most notably in Grand Lake. This stock utilizes the Grand Lake’s two primary headwaters, the Neosho and Spring rivers, with only episodic recruitment success. However, relationships between suitable spawning habitat and water level have not been evaluated in this system. Using consumer-grade sonar equipment, this study identified and quantified hard river substrates (such as cobble and bedrock) and investigated proportional habitat availability at a variety of simulated river conditions. Sonar data were used to construct 49-m2 grids of depth and bottom hardness (H) ranging from 0.0 (soft) -0.5 (hard). Ground-truthing samples of bottom composition were collected with a grab sampler and by visual identification. Substrate types were pooled into two categories: soft substrates (H < 0.386) and spawning substrates (H ≥ 0.386) allowing for estimation of available spawning habitat in each river. Spawning habitat comprised 69% of total available habitat for the Neosho River (6.5 ha/km) and 58% for the Spring River (7.9 ha/km). Estimated spawning habitat was simulated over a range of river stages and predictive models were developed to estimate proportional spawning habitat availability (PHA). Although the Spring River contains more concentrated spawning habitat in closer proximity to Grand Lake, the Neosho River contains a greater quantity over nearly twice the distance to the first migration barrier, has a larger watershed, and demonstrates greater PHA at lower river stages. Model results were validated in context of known high and low recruitment years, where a greater frequency and duration of days with ≥90% PHA were observed in good recruitment years, particularly in the Neosho River. In total, results suggest the Neosho River has greater value for paddlefish reproduction than the Spring River. Research-informed harvest management will remain critical to the conservation of wild-recruiting stocks for continued recreational use in Oklahoma.
Average Neosho and Spring river substrate hardness index (H) for substrate classification groups across pooled methods (grab samples and visual samples). Cobble/Rock includes fine, medium, and coarse cobble pooled with bedrock. Substrates represented by H ≥ 0.386 were regarded as paddlefish spawning habitat. Sample size is noted at the base of each column and error bars indicate 95% confidence intervals
Schooley JD, Neely BC. Estimation of paddlefish (Polyodon spathula Walbaum, 1792) spawning habitat availability with consumer-grade sonar. J Appl Ichthyol. 2017;00:1–9. https://doi.org/10.1111/jai.13565