BioBase Paper Published: Accuracy and Precision of Low-Cost Echosounder and Automated Data Processing Software for Habitat Mapping in a Large River

We are grateful to the aquatic research community who continue to verify and validate Consumer Sonar Technologies (Lowrance) and BioBase automated mapping platform to produce scientifically valid outputs that benefit aquatic conservation.  We are excited to see the recent publication of research out of the University of New Brunswick that evaluated the accuracy and precision of Lowrance and BioBase’s EcoSound depth and vegetation outputs.  The research is published in the open access journal Diversity and can be downloaded here. Below is the abstract

Abstract
The development of consumer hydroacoustic systems continues to advance, enabling the use of low-cost methods for professional mapping purposes. Information describing habitat characteristics produced with a combination of low-cost commercial echosounder (Lowrance HDS) and a cloud-based automated data processing tool (BioBase EcoSound) was tested. The combination frequently underestimated water depth, with a mean absolute error of 0.17 ± 0.13 m (avg ± 1SD). The average EcoSound bottom hardness value was high (0.37–0.5) for all the substrate types found in the study area and could not be used to differentiate between the substrate size classes that varied from silt to bedrock. Overall, the bottom hardness value is not informative in an alluvial river bed setting where the majority of the substrate is composed of hard sands, gravels, and stones. EcoSound separated vegetation presence/absence with 85–100% accuracy and assigned vegetation height (EcoSound biovolume) correctly in 55% of instances but often overestimated it in other instances. It was most accurate when the vegetation canopy was ≤25% or >75% of the water column. Overall, as a low-cost, easy-to-use application EcoSound offers rapid data collection and allows users with no specialized skill requirements to make more detailed bathymetry and vegetation maps than those typically available for many rivers, lakes, and estuaries.

EcoSound vs Manual Measures Vegetation Helminen et al 2019

Helpful Lowrance Hints: Depth Tracking

We promote BioBase as an automated “easy-button” solution for creating aquatic maps, but unfortunately, mobile acoustic data collection is not something you can push a button and forget about and expect perfect results.  Like using most other sophisticated instrumentation, users need to monitor that the instruments are performing as expected and sometimes make adjustments if they aren’t.

Continue reading “Helpful Lowrance Hints: Depth Tracking”

CHIRP from a bottom mapping perspective

Maybe you’ve been hearing about this term in sonar circles called “Chirp” and noticing that most consumer sonar units now come with Chirp capability. Indeed, Chirp is a game changer for more precise definition of acoustic targets suspended from bottom (e.g., fish) and the technology is helping more anglers find fish in a wide range of aquatic environments (Figure 1).  But what does Chirp mean for mapping the bottom of waterbodies?  Does it provide any advantages or disadvantages over traditional 200 kHz frequency broadband sonar that is the foundation of Insight Genesis and BioBase
EcoSound mapping services?  Here we take a brief look at Chirp, explain what it is, and present some findings from preliminary tests in a couple of different lake environments.

Continue reading “CHIRP from a bottom mapping perspective”

Offset Tool and Public Water Databases to Create Accurate Depth Maps

One of the best features of BioBase EcoSound and its sister technology for anglers, C-MAP Genesis, is the ability to aggregate partial maps created over time into a complete map later.  The recent blog post on Ten Mile Lake in Minnesota, USA, details a notable example of the power of aggregation.  However, changing water levels over the course of time can impact the accuracy of aggregated maps if recorded water depths are not offset against a standard benchmark water elevation.

Continue reading “Offset Tool and Public Water Databases to Create Accurate Depth Maps”

Mapping Ponds with BioBase

As an addendum to our blog series on rapid, portable applications we wanted to experiment with a “thru-hull” mount of the 83/200 khz Lowrance HDS transducer on a kayak for mapping storm water retention ponds in an urban area of Minnesota (City of Maple Grove).  Electrician putty (sold as “Duct Seal”) available for a few dollars at the neighborhood hardware store worked as a perfect medium for this application.  Follow the series of pictures and captions to see how this worked!

Electrician putty or “Duct Seal” available at most hardware stores can be used for shoot “thru-hull’ applications on kayaks or canoes

 

Figure 2. A 83/200 Lowrance skimmer transducer secured to the hull of a polyethylene kayak by duct seal putty. Care should be taken to remove all air bubbles from the mold before pressing in the transducer
James Johnson from Freshwater Scientific Services LLC gets his Lowrance HDS-5 all set to log data.
Tracks showing a concentric circle approach toward mapping ponds smaller than 10 acres.  This one is 3 acres located in an urban area of Minnesota near Minneapolis (Maple Grove).  Data took 30-min to collect
Blue-scale bathymetric output created after 10-minutes of data processing time by BioBase servers after upload.  Map was produced by 1,000 passively acquired GPS and bottom points.  All map outputs (e.g., water volume or hardness – next picture) can be analyzed in your private BioBase online account or exported to GIS for more sophisticated data analyses and layering
Bottom hardness automated output automatically created along with bathymetric and aquatic vegetation layers  in BioBase.  Areas that are maroon represent hard areas that remained from the original construction of the pond.  Soft areas are represented by the lighter brown colors and represent sand deltas from parking lot runoff.  Hardness and bathymetric outputs can be used to assess whether storm water retention ponds require maintenance and where specifically to focus efforts