BioBase EcoSound does Seagrass, Kelp, and Tides Too!

Although BioBase EcoSound was originally developed for aquatic vegetation mapping in inland lakes, users along both US Coasts have helped us diversify its toolbox to now be a powerful coastal habitat mapping tool as well!

One of the biggest challenges of mapping coastal habitats is their tidal influence with depths changing harmonically based on the moon phase and other factors.  Fortunately, however, widespread tide stations and large public databases of tide predictions allow for accurate and precise offsets to georeferenced and time-stamped sonar logs from Lowrance HDS or Elite units uploaded to BioBase EcoSound.  BioBase EcoSound immediately queries the nearest tide station to your upload (up to 75 km) and adjusts your depth and seagrass or kelp biovolume to the Mean Lower Low Water (MLLW) datum every 5 minutes.  Tidal statistics (Avg., start, stop, high, low,) are archived in your account for each trip.

Continue reading “BioBase EcoSound does Seagrass, Kelp, and Tides Too!”

Helpful Lowrance Hints: Depth Tracking

We promote BioBase as an automated “easy-button” solution for creating aquatic maps, but unfortunately, mobile acoustic data collection is not something you can push a button and forget about and expect perfect results.  Like using most other sophisticated instrumentation, users need to monitor that the instruments are performing as expected and sometimes make adjustments if they aren’t.

Continue reading “Helpful Lowrance Hints: Depth Tracking”

BioBase 3 Step Process: Important Details!

A primary strength of BioBase EcoSound is its simplicity and that is reflected in the easy 3 step process of “Collect,” “Upload,” and “Analyze” (Figure 1).

Figure 1. The core process of EcoSound depicting the 3 Steps of “Collect,” “Upload,” and “Analyze.”

But there are many strategies that users can employ that will ensure that they will get the best EcoSound outputs possible.  We’ll focus on several questions under each of the three categories

Continue reading “BioBase 3 Step Process: Important Details!”

Aquatic Mapping Strategies

Producing professional-quality aquatic maps has never been easier with Lowrance and BioBase mapping technologies, but there are several strategies that can help you optimize your time on the water and produce the best possible map output:

Continue reading “Aquatic Mapping Strategies”

Choosing and Installing your Lowrance Transducer

The transducer connected to your Lowrance echosounder plays a critical role in producing quality map outputs.  Fortunately, the mechanics of producing quality hydroacoustic signals has been honed by 57 years of research and development by engineers at Lowrance.  Still, users play an important role in optimizing outputs by selecting the correct transducer and installing it correctly

Continue reading “Choosing and Installing your Lowrance Transducer”

BioBase In The News: Aquatic Habitat Mapping Off-the-Shelf

From the Peninsula Clarion in Alaska published on 6/19/2014.  Story by U.S. Fish and Wildlife Ecologist Mark Laker with the Kenai National Wildlife Refuge.

Continue reading “BioBase In The News: Aquatic Habitat Mapping Off-the-Shelf”

Getting good BioBase EcoSound outputs depends on a good transducer mount!

EcoSound is a powerful and intuitive aquatic resource data processing engine that professionals across the globe are coming to recognize.  However, the quality of automated outputs greatly hinge on a proper Lowrance transducer mount.  If the transducer is off at an angle, the acoustic cone will intercept bottom at an angle and will falsely read depth, bottom composition/hardness, and vegetation height (Figure 1).

Figure 1. Example sonar log from a transducer face that is not 180 degrees with bottom as seen in Lowrance’s SonarViewer

 

Strategies for installing your transducer.
There are a wealth of online resources via YouTube, Google, and our own blog series (for example see our portability blog) about proper transducer mounts.  Just search “Lowrance Transducer Installation” and you’ll have a wealth of self-help resources at your disposal.  An output from a properly mounted transducer should look like Figures 2 and 3 where the bottom signal is clearly distinguishable from aquatic vegetation.

Figure 2.  Screen shot from a Lowrance HDS7 Gen2 Touch of a clear bottom signal and submerged aquatic vegetation from a properly mounted 200 kHz skimmer transducer.
Figure 3.  Example of what a clear 200 kHz signal over a vegetated bottom looks like in the EcoSound Trip Replay screen.

Often, aquatic vegetation grows to the surface of lakes and one of the unique strengths of EcoSound is that the vegetation detection algorithm recognizes conditions that appear to be surface growing vegetation and classifies the growth as such (i.e., biovolume = 100%).  Still, in order for the algorithm to function in these environments, some signal must periodically pass through the vegetation canopy and get “peaks” at bottom deeper than 2.4 ft (EcoSound minimum depth for vegetation mapping; Figure 4).  If you are mapping areas shallower than this depth, you can add manual vegetation coordinates to unmapped areas (see a CI YouTube video on how to do this)

Figure 4.  Example of a good signal in surface growing vegetation.  The bottom still tracks occasional depths of greater than 2.4 feet.  Long periods of no depth signal or depths less than 2.4 feet will result in unmapped areas and will require manually adding vegetation coordinates to your EcoSound output.

Monitor SONAR screen while you map
Because having a clear transducer signal is so critical for quality EcoSound data and map products we recommend that users verify a clear Sonar signal in an open water area prior to logging.  Drive your boat at different speeds and evaluate at what speed “slivers” start to appear in the bottom signal (Figure 5).  These slivers represent acoustic “misses” and typically result from cavitation of water around the transducer face.  Periodic slivers or misses while recording are ok, but we recommend that users monitor their SONAR page and take measures to minimize these disturbances (e.g., slow down or adjust the depth of the transducer a few inches – sometimes that’s all it takes).

Figure 5. An example of where the acoustic signal “missed” the bottom target (white slivered areas).  These misses typically result from either an improper transducer mount or excessive speed of travel that causes cavitation near the transducer face.

A Transducer Field Checklist

It might be helpful to ask these questions prior or during recording while looking at your SONAR screen and if the answer is yes to any of them, stop recording and make adjustments.
  1. Does the bottom, fish, or plant targets appear slanted?
  2. Does yellow surface clutter extend a long way into the water column and might possibly obscure vegetation target separation?
  3. Is my depth signal flashing or am I getting no digital reading?
  4. Is my range window jumping around indicating it can’t find depth?
  5. Am I getting a lot of white slivers in my bottom reading?
Editing your EcoSound output

If bad signal does sneak past your scrutinizing eyes, fear not, you can always edit your output with EcoSound’s Trip Replay feature as seen in our YouTube video series.

By installing your transducer correctly and monitoring your output you’re almost guaranteed a quality map of lake, river, or coastal habitats with EcoSound.  Contact us at info@biobasemaps.com to learn more.
Translate »