"Back from the Brink" – Around we go

The Aquatic Ecosystem Restoration Foundation provides a critique of the investigation into the fall and rise of fish populations in a Northern Wisconsin lake (Ellwood), and the potential links with an invasive aquatic plant (Eurasian watermilfoil) and a common aquatic herbicide (2,4-D).  See the original news story here.  It’s an ongoing saga that we originally commented on in an earlier post

We believe with more rigorous habitat mapping and monitoring, this story (and future ones) will become less interesting because entertaining anecdotes will be replaced with good objective and quantitative data.

Guest Blog: Precision aquatic plant assessment and management in Michigan Lakes

By Jennifer L. Jermalowicz-Jones
Restorative LakeSciences is actively involved in the management and restoration of nearly 60 lakes in the state of Michigan and on water bodies in other states such as California and Wisconsin.  As an innovative specialty firm of advanced-degreed limnology experts, our goal is to provide thorough educational training to lake communities while using the most innovative technologies for lake improvements.  BioBase software (Contour Innovations, LLC) in combination with the Lowrance® HDS8 side- and down-scanning capabilities allows us to precisely determine the biovolume of the submersed aquatic vegetation in inland lakes.  Additionally, it also assists in the determination of individual aquatic vegetation bed areas that are mapped by aquatic botanists to be treated precisely with systemic or contact aquatic herbicides or with other removal technologies (Figure 1).  This technology has resulted in highly effective reductions of nuisance aquatic vegetation biovolume and bed densities due to the precision of treatments.  As a result, all of our lake management communities have been satisfied with the strategy and can easily see significant progress within a single season.
Restorative Lake Sciences, Evans Lake, Michigan, ciBioBase, BioBase, Eurasian watermilfoil, mapping, aquatic plants
Figure 1. ciBioBase aquatic vegetation heatmap collected by Grant Jones, Field Operations Manager, Restorative Lake Sciences (left) and Eurasian watermilfoil beds delineated with companion species surveys and the BioBase polygon tool.  Polygons were exported from BioBase and uploaded to Google Earth.
Jennifer L. Jermalowicz-Jones, MS, Ph.D Candidate, is the Water Resources Director at Restorative Lake Sciences and oversees over nearly 60 inland lake projects which include aquatic vegetation mapping and management, lake sediment reduction studies and management, algal quantification and identification and algal management programs, and watershed management programs.  She has over 24 years of experience in lake research and management and is pursuing her doctoral degree from Michigan State University in Water Resource Management.  She is also the President of the Michigan Chapter of the North American Lake Management Society, serves as the Science Advisory Chair on the Michigan Lake and Stream Associations Executive Board of Directors, has won numerous awards and grants for her aquatic ecosystem research, and has presented numerous papers at state and national conferences on water resource and lake management.

The Wake Up Call to Action for Objective Lake Monitoring and Management

The unexpected consequences of fighting Eurasian Watermilfoil, preventing fish from successfully reproducing?  Response by Contour Innovations’ President Matt Johnson

Recently, freelance journalist and underwater photographer Eric Engbretson published an article entitled ‘The unexpected consequences of fighting Eurasian Watermilfoil, preventing fish from successfully reproducing?‘ on a news service blog sponsored by Fishiding.  The article’s focus was Lake Ellwood Wisconsin where Wisconsin DNR Fisheries Biologist Greg Matzke presented evidence of declining Largemouth bass, Northern pike, and bluegill populations and evidence of recurrent reproduction/recruitment failures of these species.  Much of what is presented can be found in a draft WI DNR Fisheries Report.  Matzke speculates that declines in populations of these vegetation-dependent species may be due to a loss of aquatic vegetation over the last 10 years by repeated whole lake treatments.  In the DNR Report Matzke presents spotty, often subjective estimates of aquatic plant abundance which makes it difficult to confidently associate aquatic plant declines due to treatments with declines in fish populations.

It’s often difficult to respond to topics like this because, as a non-biologist and an employee of private company that provides a product for this field, I’m always concerned that my comments would be misconstrued as commercial, driven by my interest to sell products or my failure to understand the biology behind the “whole picture.”  I approach this topic as an outsider that gets to observe the industry and sometimes provide a unique perspective without a specific interest or deep understanding of a particular biological issue.   It is this observation stance that allows me to recognize that this article is a wakeup call regardless of position.

Every opinion, no matter what side of a topic you land on, will go nowhere if we don’t have objective information to make an argument or defend a position.  This is something both government biologists/regulators and aquatic service providers should agree on here.  This report is an opportunity to finally connect all groups within the aquatics field to perform holistic investigations, recognize when there’s a lack of good data, and take steps to acquire critical data.  It’s an opportunity to have the discussion the aquatics field deserves.  Failing to at least put resources towards making the connection between data inadequacy and historical needs from this article is a failure in the structure of the aquatic industry and maybe even society.  Compliance is one thing while a constant quest towards better data-intensive monitoring and management is quite another.

Sometimes this lack of “good data” is a result of a failure of technology to provide the tools required to gather and analyze the information we need, and sometimes it’s for other reasons like budget, human resources, access, and priorities.  I struggle with the paradox that the some people who argue that we need to look at the data before we make decisions on Ellwood are some of the same people I’ve seen resist an objective method that can provide these results.  It doesn’t add up.  Without objective, repeatable aquatic plant assessment methods, the field never moves forward and everyone gets to pick a side and stay there. Consequently, circumstantial evidence and speculations are used to assign a cause and place blame.  This puts the accused on the defensive using lawyer tactics to avoid any accountability.  This gets us nowhere

A way forward . . .

Contour Innovations is already helping to facilitate collaboration between fish monitoring and invasive plant management with fantastic, even unexpected results.  All involved hope the data sharing model grows into the future of monitoring and management.  By using an objective, passively logged and repeatable system of plant abundance and characteristic monitoring, multiple interests are benefiting simultaneously.   Fisheries managers are using quantitative measures of aquatic plant habitats to formulate fisheries management goals, Invasive aquatic plant managers are using these same data sets to evaluate invasive nuisances and are taking measures to address the nuisance while not compromising fish habitat.  This is a different way of thinking proactively instead of reactively and we can’t miss opportunities to highlight the need.  We can claim that the technology is the future, but technology is merely a catalyst for the necessary paradigm shift.

Our position has remained consistent since the Company’s founding, but is more relevant now than ever: That is, prudent management and regulation of lake ecosystems requires that decisions be based on objective, quantitative information about the status and trajectory of the system(s) of interest.  Continued decisions in an information-poor or anecdotal-evidence environment risk situations and blame like those observed on Lake Ellwood.

We haven’t picked a side but the industry and field needs to embrace or seek a more standardized or objective way of measuring aquatic plant abundance data.  I’ve heard a lot of requests for automated speciation data but here we are wishing we had objective abundance data.  There are some “cool” parts of our systems but we started BioBase because it fills a need.  Subjective methods of plant monitoring are already outdated. This has never been more apparent.

An Unfair War with Aquatic Invasive Species

The Importance of Aquatic Vegetation Abundance Mapping and Long Term Monitoring from a Layman’s Perspective

 

From a layman’s point of view it can be very difficult to understand the importance of lake weeds as they relate to aquatic invasive species (AIS).  I should know . . . I’m a layman.  I started asking questions, and it turns out it’s a bit more complex than I thought.  Sure, I want the Minnesota Lakes I love to be clear with tons of fish, but do we really need these weeds?  Of course we need some “weeds” (“aquatic plants”), and, if you get rid of too many you can throw the entire lake ecology out of balance for years.  When I asked how much is a good amount and how it is being tracked in Minnesota I was disappointed with the answer.  During my time working for the software company Contour Innovations, focusing on automated lake mapping, I’ve had the pleasure of working with some of the most talented aquatic biologists in the Country, both in-house and through our customer base.  I’ve spent the last few years learning the language and attempting to catch on from a neutral, outsider’s perspective.  Slowly, I realized that the complicated topic could be effectively communicated to anyone that cares about and has an interest in water quality . . . which should technically be everyone.

Let’s face it, the DNR has done a great job demonizing invasive species for good reason and with some positive results.  There’s more awareness now and budgets in place to attempt to manage the spread and introduction.  But, eradicating AIS once introduced into a lake is only half the story.  . .
I’ve learned a lot over the last few years but I still had some questions:  Why should our customers really care about the total habitat when Eurasian Water Milfoil has already invaded their lake?  Don’t they just want to know where the Milfoil is so they can get rid of it?  If a monitoring program can’t distinguish between species does it still have a use in aquatic research or management?  I originally thought that identifying where the Milfoil is located is key, but I actually found the opposite to be true.  If we live by the idea that “AIS are bad and should be eliminated at all costs,” wouldn’t the results be easier to obtain? 
The concepts of ecosystem balance are extremely complex but vital.  After early discussions with our biologists it become clear to me that abundance is one of the most important metrics to consider when monitoring water quality and lake health.  This remains true if an invasive species has already been introduced or it’s just knocking on the doorstep.  We need to focus our analysis on total abundance and the overall aquatic habitat instead of speciation as a sole predictor of lake health.  What really matters is knowing if your lake is at risk of the negative impacts from invasive species and if your lake ecology is within certain “healthy” parameters.  A lake’s resilience to invasive species and current water quality regime is going to be a major indicator of lake health and prospects for the future.  It’s also important to quantify your management interventions and determine if they are having their desired effect.  These were difficult questions to answer in the past. 

Invasive species are coming.   We can try to stop it but more likely we’re just delaying it.  The reason these species are thriving is because they’re designed to thrive.  With the right conditions they can easily steal the resources required to grow from other plants, effectively eliminating competition from the lake.  They’re opportunistic and the microscopic amount required for infestation is astonishing.  We should accept this fact and be realistic about what we’re dealing with.  It doesn’t mean we roll over and stop the cleaning stations or citations for failing to drain your bilge, but a proactive management and monitoring plan is a good idea.   

Let’s understand our lake’s resilience and identify if it’s at risk.  Let’s get our resource managers identifying which lakes need close attention and devote our stretched budgets to the ones that need it.  The chips are already stacked against us and without good quantitative data, they’re stacked even further.   With mismanaged resources it becomes a war we can’t win.

At a certain level of productivity, an invasive species will win the war against a diverse ecological aquatic habitat and turn into a lake of a single species.  This isn’t a good thing for any lake ecosystem or water quality.  It’s all about balance and a healthy lake habitat can help keep an infestation in check.  It’s also possible that certain management techniques could push a lake towards a higher risk scenario if decisions were made without quality abundance data.  Understanding the risks of this happening are key in designing a management plan to be proactive instead of reactive.  Identifying hot spots in abundance and potential causes could be more important than identifying where the invasive species exist.  The best thing is that it’s never too early or late to start. 

The entire ecosystem is tied together.   The cumulative effect of lake stressors can lead to the low resilience required for an invasive species to thrive.  Identifying the stressors and dealing with them could prove more valuable than eliminating an invasive species.  Much like a healthy body can deal with the flu virus better than an unhealthy one, a lake with good shorelines, healthy fish communities, and healthy diversity of plant abundance can keep an infestation in check.  In certain conditions, taking plants out of the lake might be a bad decision that could have a negative effect on lake ecology depending on the lake regime and characteristics of the lake.  
In fact, there are ideal targets and optimal or idea habitat levels and conditions.  Our own Ray Valley, a 10 year veteran of the Minnesota DNR, has devoted a majority of his career to habitat monitoring and interactions between plant abundance, fish, lake resilience and relationships to water quality.  His research on ecosystem balance, namely lake resilience, is instrumental in understanding what’s really happening in a lake and when lakes are at risk.  Much of this is actually tied to plant abundance and changes over time.
Through a long term monitoring program it’s possible to identify the red flags.  Plant abundance growing at deeper depths from year to year could show an increase in water clarity allowing more light penetration.  This might be caused by a recent zebra mussel infestation or a shift in the lakes ecology.  Regardless, something as simple as the depth aquatic plants grow tells us a ton about the direction the lake is going.  In another example, unusual increases in plant abundance in specific areas could indicate, among other things, a home with a leaking septic tank on the lake, a change in the landscape, changes in sedimentation, a run-off issue or a bigger problem upstream.  All of these, left unchecked, could cause more problems for the lakes balance and resilience leading to higher risk of negative impacts of an invasive species introduction.   These changes don’t show up in a visual reconnaissance, presence/absence surveys with a rake, or a single map.   But getting these items resolved could be the management technique that keeps an invasive species from dominating a lake habitat in the future and early detection of these problems could prevent an unfair fight against AIS in the future.
Complete dominance of an invasive species is another story but it’s also the exception.  I’ve seen a number of groups continue to dump massive amounts of money into management without quantitative goals or the ability to effectively quantify the whether they are meeting their management expectations.  Maybe we’re not asking the right types of questions or maybe the technology didn’t exist to get the information we need.  No one is at fault yet.  Once the dialog shifts away from hysterical talking points and towards pragmatic management approaches, we’ll start making real strides in getting ahead of AIS and start achieving improvements in our precious lakes.

So where do we start?  With crowd-sourced solutions like ciBioBase.com we can all start getting the volume of data we really need to have this realistic and proactive discussion.  With cloud computing we’ve broadened the base of individuals that can participate allowing passionate home owner groups to take matters into their own hands instead of waiting for an understaffed DNR.   Aquatic plant abundance maps that took a highly trained hydrographer a week or more and to complete can be done by anyone with a boat, a depth finder and GPS, and 20 minutes for computers do the work of processing the collected data.  This is the future of monitoring and lake management.  There are no longer barriers to getting the kind of data we need for identifying the red flags, eliminating stressors and improving lakes across Minnesota and the globe.
So, let’s understand the lakes heartbeat first.  Let’s get a clear picture of the lakes resilience and its current status for optimal health.  Then we move forward to a future with cleaner lakes.

This article represents and aggregation of my thoughts as I’ve journeyed through this industry and tried to learn the ropes.   This is merely an appeal to think differently about our lakes, expectations, and what the future holds.  The future of our most important resource is brightest if we take a step back, think about what we’re doing and where we need to go.
 
Let’s have those realistic and proactive discussions with real data . . .
                                                         -Matt Johnson, CEO, Contour Innovations, LLC

 

CONTOUR INNOVATIONS AND CIBIOBASE

ciBioBase (ciBioBase.com) removes the time and labor required to create aquatic maps! ciBioBase leverages log file formats recorded to SD cards using today’s Lowrance™ brand depth finders and chart plotters. Data you collect while on the water is uploaded to an online account where it is processed by our servers automatically! We rely on automation to make vegetation mapping cost effective by reducing the technical skills, staff, and hours to produce vegetation abundance maps from raw sonar collection. With the human element gone, you get accurate and objective mapping at lightening speeds! The result is a uniform and objective output all over the world!
I’m proud to be a part of this step in the right direction of a positive future for lake management and overall quality of our most precious resource.  We’re shaking things up and this is a time when everyone benefits.  We work as a huge team to define the best uses and features of one of our products, BioBase, to change the lake management industry.  We’re using expert opinions and powerful cloud computing to create amazing contour and vegetation maps and gain important quantitative metrics of lake health.

Our Company has a culture that considers its social responsibility and contribution.  Our sales team is motivated by how they are changing the future of lakes and resources management.  I was most intrigued by what we might be contributing to the future of a resource that means so much to me.  I’m still intrigued!

Point-Intercept on Steroids

Who would’ve known that an obscure technical report describing a sampling methodology would become a classic in the world of Aquatic Plant Management and be adopted as a standard by lake service providers and government agencies?  Although it was old hat in the world of terrestrial Botany and Forest Ecology, Dr. John Madsen appeared to be the first to make point-intercept a standard tool for aquatic ecologists and lake managers with his Army Corps of Engineers Technical Note No MI-02 published in 1999 entitled “Point Intercept and Line Intercept Methods for Aquatic Plant Management.”

Briefly summarized, point-intercept methodology entails creating a grid of GPS points on a waterbody and traveling to those points and sampling the aquatic plants in those areas typically by throwing a double-headed rake and pulling up whatever it catches (Figure 1).

Figure 1. Contour Innovations Aquatic Biologists Jesse Amo (back) and Ray Valley (front) conduct a point-intercept vegetation survey while logging acoustic data on Orchard Lake, Dakota Co. MN.

The simplest and most objective application of the method is to simply record the presence of each species on the rake.  This does not lend much insight into how abundant each species is at each point and a mat of surface-growing vegetation gets the same weight as a lonely sprig (Figure 2).  To address this short-coming, several adaptations to the method have been made by various practitioners including ranking the abundance of different species on the rake.  Although some may argue it’s a “better than nothing” measure of relative abundance, I would argue, not much.  There is no straightforward way to objectively rank the abundance of 5 different species in a gob of plant matter on a rake like seen in Figure 1.  As a consequence, results are not repeatable and four different investigators could produce four different results for the same sample.  Further a relative ranking lends little biological information about the architectural structure or canopy height of aquatic plants.

Figure 2. Conceptual figure of a point-intercept sampling point in two contrasting environments.  In the pure application of the method, if the rake intercepts the diminutive sprig in panel B, it would be given the same weight as the thick mat in panel A.
Biological processes, water quality, physical habitat and recreational conditions all hinge on the state of aquatic plant ABUNDANCE in a waterbody.  As I have described above, point-intercept or any subjective adaptation is not well suited to address aquatic plant abundance concerns.  Nevertheless, point-intercept has many strengths and one shouldn’t throw the “baby out with the bath water.”  Rather, ciBioBase offers a powerful and efficient way of getting more out of your point-intercept species sampling.
To add biovolume to your point-intercept surveys all you need is a Lowrance HDS depth finder, a $10 SD card from your favorite electronic retailer, and a subscription to ciBioBase (single lake and unlimited pricing are available).  No additional set up is necessary.  No technical mapping experience needed.  Just hit record, and jump from point to point like you’ve done in the past.  The HDS unit will passively record the GPS signal and acoustics the entire time.
After you return from the field, upload the data to ciBioBase, get a cup of coffee and catch up on some email.  Approximately 30-min to an hour later, one of the new emails in your inbox will be an alert from ciBioBase informing you that your plant abundance and bathymetric map is processed and ready for viewing.
Not only does passively logging sonar data while conducting species surveys require no additional work, but you sample important interim areas between points and get understanding of the TRUE coverage of plants (not just the frequency of plants sampled with your rake).
Unleashing the power of Point-intercept by using ciBioBase
Although ciBioBase comes with many analytical tools, its full potential to inform aquatic plant management is realized when the data is exported out of ciBioBase and into GIS for analysis with other data layers (Figure 3).
Figure 3. ciBioBase users have the option to export processed point data along their GPS track (Point) or  the uniform grid created by kriging interpolation (Grid).  Users can then import these files into GIS for further analysis with their point-intercept data layers.
By converting the ciBioBase grid text file into a Raster grid and using a “point on raster” analysis utility available both in ESRI’s ArcGIS and Quantum GIS (an open source GIS program), users can grab the biovolume value for a point-intercept sampling point (Figure 4).

Figure 4. Example of biovolume data (grid of blues, purples, and reds with increasing density or biovolume getting a “hotter” color) imported into GIS and overlain with point-intercept species data (yellow points are northern watermilfoil – a native stand-in for its unwelcome foreign cousin Eurasian watermilfoil).  The Point Sampling Tool in Quantum will extract grid values from one raster layer and attach them to a different point-layer.
In the hypothetical example in Figure 4, anywhere where milfoil is present we can see how dense the vegetation growth was at the sampled point and around it.  By using the Point Sampling Tool in Quantum that captures the biovolume grid cell value for each surveyed point, we found that for all milfoil points, average biovolume was 65% (with many points at 100% or surface growing).  For all other vegetated points, biovolume was only 45% with many less 100% values.
How can information on species abundance lead to better management decisions than presence alone?  It is generally unrealistic to eradicate most invasive species, and often a more realistic objective is to manage the abundance to an acceptable level.   Perhaps the surface growing tendency of milfoil (i.e., biovolume = 100%) is the primary management concern and that reducing “biovolume” to say, 45% with much less surface growth like other native plant species, would be a desirable result.   Presence/absence data from point-intercept surveys alone will not inform whether plant abundance is being managed within desirable levels.
Case Study: Whole-Lake Treatments of Fluridone with Both PI and Biovolume data
Valley et al. (2006) describe results of whole-lake applications of the herbicide fluridone to a nutrient-rich Minnesota Lake (Schutz Lake, Carver Co. MN).  As part of the evaluation, hydroacoustic surveys of vegetation biovolume were conducted before and after the treatments in addition to point-intercept species surveys.
The treatments reduced Eurasian watermilfoil below detection levels, but also directly or indirectly played a role in reducing the other dominant native species in the lake, coontail.  In fact, almost all submersed vegetation disappeared 1-2 years following the treatment; however, one would never get that indication by solely looking at the point-intercept statistics (Figure 5).  

Figure 5. Mean whole-lake percent vegetation biovolume from hydroacoustic surveys (bars) in Schutz Lake, Carver Co. MN from Valley et al. 2006.  Percent frequency of occurrence of all vegetation from point-intercept surveys conducted at the same time (numbers above bars).
What had occurred was a situation that went from Figure 1A to Figure 1B.  To a rake, these environments are the same, to a lake manager and concerned citizen, they are strikingly different.  Evaluating results with Point-intercept frequency sampling alone can mask unintended harm to water quality and lake resilience.
In the 2000’s, point-intercept methods gave resource managers an objective and rapid species assessment tool.  Now, ciBioBase adds a critical third dimension to these surveys with no additional effort or training. By implementing ciBioBase as a part of standard aquatic plant assessments, resource managers and citizens will be better informed about the true state of vegetation growth in a lake and how it’s changing as a result of environmental change and our management responses.

References
Madsen, J. D. 1999. Point Intercept and Line Intercept Methods for Aquatic Plant Management. APCRP Technical Notes Collection ERDC/TN APCRP-MI-02.
Valley, R. D., W. Crowell, C. H. Welling, and N. Proulx. 2006. Effects of a low-dose fluridone treatment on submersed aquatic vegetation in a eutrophic Minnesota lake dominated by Eurasian watermilfoil and coontail. Journal of Aquatic Plant Management 44:19–25.

Paradise Lake Improvement Board (MI)

Contour Innovations has recently adapted the ciBioBase platform and pricing options to support the mapping initiatives of local government units, home owner associations, and improvement boards.  One of the most recent additions to this project has been the Paradise Improvement Board in Carp Lake, MI (Lower Peninsula) and we’re excited about it!*

The Paradise Lake Improvement Board (paradiselakeimprovementboard.com), through crowd sourcing and citizen science concepts, can now quickly determine the location and abundance of aquatic vegetation for management interventions and quantitative evaluation of the effectiveness of those techniques.   

There’s no technical expertise required!  Our biologists walked the volunteers of the PLIB through a demo account to demonstrate the key features for success with ciBioBase and discuss the recommended settings and collection techniques.    

 
 It’s this simple

Led by board member Catherine Freebairn, the PLIB purchased 2 Lowrance™ HDS units that will be set up as portable units for the lake group and an unlimited upload subscription to ciBioBase.com.  These units will be used to map Paradise Lake during dedicated mapping time as well as during pleasure cruises with passive collection.  With each minute on the water, the PLIB volunteers will be collecting vital statistics on aquatic vegetation, bathymetry, water temps, water volumes, and water clarity, all by hitting “log sonar” on their new HDS sonar units.  All of this data will be stored in their private online account. 
Aquatic biologist Ray Valley commented, “Protecting our lakes demands understanding of what lies beneath the surface and how its changing as a result of environmental changes and our responses to them.”
Using the innovative ciBioBase System, the PLIB has started building a historical database of their aquatic environment to monitor vegetation abundance and other important water quality characteristics over time.   They can now quickly determine the location and abundance of submerged aquatic vegetation for management interventions and quantitative evaluations of effectiveness of those techniques.  This database is the catalyst for efficient management today and in the future.  By gathering  this data each time someone is on the lake, the Board can crowd source the mapping effort and share information with their service providers for collaborative and objective decision making.  

“The PLIB has always shown a substantial passion for their lake and we feel that their early adoption of our powerful technology will be rewarded on many fronts,” said Contour Innovations’ CEO Matt Johnson.  “It’s very easy to work with groups like the PLIB who see the big picture in lake management and monitoring and want to see results.  They develop close relationships with their service providers and home owners to work hand-in-hand in understanding the best opportunities to reach their goals.  This is the first time that groups like this can use acoustics for accurate vegetation mapping and ciBioBase fits perfectly within their strategy,” he added.  

The PLIB will be working with their service providers (who will also have access to uploads and maps) to make important management decisions, monitor changes, and objectively evaluate if management interventions are having their desired effects.  With the support of all involved, including Contour Innovations’ own aquatic biologists, the future looks bright for Paradise Lake and anyone that enjoys all it has to offer!
 An Example of a Lake Mapped with ciBioBase
 Aquatic Vegetation Displayed in % BV (water column occupied by plants)

If you’re interested in finding out more about ciBioBase and how it can help your association or improvement district, please contact us and we’d be happy to set up a person demo for you with one of our biologists.  Please contact Jesse Amo for additional details:  JesseA@ContuourInnovations.com

For more information on the Paradise Lake Improvement Board please check out their website at paradiselakeimprovementboard.com.

*Contour Innovations does not release personal information about our customers.  We obtained permission from the PLIB before this media release.

Precision Management-Time to Quantify

Lake Harriet Monitoring Before and After Harvester. . .

A multitude of factors impact the health of aquatic systems creating a need to monitor lakes’ “vital signs”.  In the same way it is expected that a medical doctor will do more than glance at a patient and say: “you look fine” the same is needed for our lakes.  A number of different vital signs are necessary to give a precise assessment of human health and our aquatic systems are no different, they are complex biological systems.  ciBioBase provides many “unchecked” parameters that have not been assessed until now in an automated processing system.  Two trips on a small section of Lake Harriet in Minneapolis collecting “vital signs data” have already told a story about big changes in the aquatic community.  What more can we learn about this complex ecosystem by simply monitoring with ciBioBase on an ongoing basis?
A data collection trip with ciBioBase in late June on Lake Harriet revealed what you might expect from an unseasonably warm spring in a lake infested with Eurasian watermilfoil(EWM).  Aquatic plant growth was several weeks ahead of schedule with EWM dominating the sample area on north shore and already being matted on the surface.  The majority of near-shore areas sampled exhibited near 100 % EWM biovolume (% water column occupied).  In fact, in the far east and west reaches of the sample area our survey-boat was skirting matted EWM too dense to navigate through.  Wherever vegetation occurred (percent area coverage) on the June 18th survey the biovolume average was very high, due to it being composed primarily of EWM (average of 54.4%).  
BEFORE:
 

In late August a comparison trip was completed, navigating the same transect line from the June trip using ciBioBase following the Lowrance HDS track overlay on the unit.  A striking feature noticed shortly after getting on the water was…..Where was all the topped-out vegetation?  The transect sampled on June 18th skirted topped-out EWM, but on August 22nd no topped-out vegetation occurred in the same sampling area.  This excerpt from the Star Tribune written by Bill McAuliffe on June 10th explains: “The Minneapolis Park Board’s milfoil harvest began with a single mower.  . The harvesting each year generally requires at least two passes through each lake. Cedar Lake was scheduled for mowing Friday. After that, Lake Harriet is on the schedule.” (View the article by clicking here).  That would explain the drop in average biovolume in vegetated areas from 54.4% to 16% and overall average biovolume for the entire sampled area from 28.3 to 5.1%.

AFTER:
*Automated Reports Generated for Each Trip Uploaded to ciBioBase

ciBioBase not only displays that the average biovolume in vegetated areas for this study site dropped from 54.4% to 16% and overall average biovolume for the entire sampled area from 28.3 to 5.1%, but it also outlines vegetation distribution.  Spatial characteristics such as the shift from about 30% of the sampled area having a biovolume of  >80% to 0.34% of the sampled area having a biovolume >80% after the EWM harvest are also a part of the ciBioBase data output.

ciBioBase has enabled users to precisely compare changes in biovolume and spatial distribution of vegetation; pinpointing changes and quantifying their outputs.  This means precision monitoring and management using quantifiable target goals while leveraging objective “before and after” monitoring data that is easily collected, processed, and viewed with the ciBioBase system.

Knowing precisely “where and how much” are critical components to knowing if management plans are effective.  Another excerpt from Bill McAuliffe’s Star Tribune article states: “The Lake Minnetonka Conservation District launched its two mowers Thursday, about on schedule because it uses school teachers to run them, said Judd Harper, who manages the district’s milfoil removal. But weed growth on the lake is “a lot worse than it was last year,” Harper said.”  ciBioBase provides numbers behind “a lot worse”.

Using the ciBioBase system and historical database comparison, it is now possible to quantitatively identify year to year and other temporal trends.  Managers can now implement corresponding management based on sound scientific data and quantitative metrics.  ciBioBase is the key to precision management!

TRIP COMPARE FEATURE IN CIBIOBASE

* %BV (% of the water column filled with plants)
ANOTHER SHOT OF BAIT FISH PICKED UP BY STRUCTURE SCAN

 

ABOUT CIBIOBASE:

ciBioBase removes the time and labor required to create aquatic maps! The System was engineered to provide automated cloud based bathymetric and aquatic vegetation mapping and historical trend tools for aquatic habitat analysis. ciBioBase leverages log file formats recorded to SD cards using today’s Lowrance™ brand depth finders and chart plotters. Data you collect while on the water is uploaded to an online account where it is processed by our servers automatically! We rely on automation to make vegetation mapping cost effective by reducing the technical skills, staff, and hours to produce vegetation abundance maps from raw sonar collection. With the human element gone, you get accurate and objective mapping at lightening speeds! The result is a uniform and objective output all over the world!