Mapping is Easier with Passive Collection

I remember the days when you had to schedule an hour out of your field day to “set up” and “take down” your mapping set-up.  Wires, an echosounder, a transducer, a GPS, a PC to run everything all had to be set up and configured (Figure 1).  Most importantly, equipment had to be secured by creatively fashioned brackets, booms, and working platforms so you didn’t lose a $4,000 part.  Many horror stories over the years have been told by colleagues who forgot “Righty” was “Tighty” and as a result dropped an expensive piece of fish structure in the drink!

Figure 1.  Elaborate set up of wires, brackets, and working platforms needed to operate the  hydroacoustic systems of yesterday

Needless to say, life during this period was about dedication.  A dedicated survey boat.  Dedicated surveys.  Dedicated staff to run the equipment.  Dedicated staff to analyze the data.  Dedicated staff to oversee that “Righty” made “Tighty” (ok, maybe not that bad).  But still, the expense and logistics of such dedication kept hydroacoustic mapping out of the reach of most water and fisheries resource entities.

With advances in consumer sonar technology, GIS and cloud-computing, now anyone can create high quality bathymetry, vegetation, and bottom hardness maps and datasets with a $700 Lowrance Depth finder, a canoe, and access to the internet with a subscription to ciBioBase (Figure 2).

Figure 2. A 3.6-acre storm water retention pond mapped in 30-min (upload processing time = 10-min) using a canoe and a portable Lowrance HDS-5.  Red lines are the actual traveled track along which data were collected and uploaded to ciBioBase for the generation of the bathymetric map.

Who needs dedication anyway?

No needs for a dedicated boat. The unit can be made portable with no larger than a 12” by 8” footprint (Figure 3).  The transducer(s) and optional GPS can be mounted on a bracket available from Cabelas (Figure 4).  This set up can then be put on a range of vessels from a canoe to a large cabin cruiser.  It can be checked out and passed around by lake association subscribers taking turns mapping the lake on which they live if they don’t already have an HDS.

Figure 3.  Lowrance HDS units can be made portable a variety of different ways to fit your budget and  sampling needs.
Figure 4. Example portable mounts for transducers 
No needs for dedicated surveys. Whether you are a lake association member drinking cocktails (while staying under the legal limit of course) on pleasure cruise on your pontoon or a biologist going point-to-point sampling species of plants, passively recording sonar data requires no work outside of hitting “record,” inspecting the screen for signal quality (i.e., a clear picture), and uploading the data when you return from the field.  ciBioBase algorithms rigorously evaluate the quality of each signal and filter poor outputs (Figure 5).  Back in the day, the staff hydroacoustician had to do this.  Computers do this now.

Figure 5.  Example of automated data quality filtering by ciBioBase.  In the top example, bass tournament anglers were rapidly hopping from spot to spot.  Vegetation detection becomes unreliable at speeds greater than 12 mph.  Consequently, outputs are not generated at speeds that exceed this threshold.  In the bottom example, depths were shallower than 2.4 feet and thus not mapped because of detection errors in depths shallower than this threshold.  However, manual waypoints can be added in these locations within users’ ciBioBase account.

No need for dedicated staff trained in hydroacoustics and GIS.  Although ciBioBase offers much for the Hydroacoustic and GIS aficionados via data exporting and importing into their favorite data analysis software, training in hydroacoustics and GIS is not a prerequisite for creating good outputs and datasets.  Hydroacoustics and Geostatistics are not new or “soft” sciences that are so variable and complex that they can’t be automated (i.e., ecology).   The basic physics of sound traveling through water and reflecting off of various objects has been well understood for decades.  Concepts and applications of kriging (originally developed in the gold mining industry) are almost as old and well understood.  Accordingly, ciBioBase automates the interpretation of acoustic signals, creation of a GIS map layers, and standard summary reports.

Dedication in almost every aspect of life is an admirable virtue for which we all should strive.  However, when it comes to mapping lakes, rivers, or ponds, ciBioBase lowers the prestige of this virtue.  Indeed, there will always be a well-placed need for dedicated mapping.  However, we feel opportunities for understanding the dynamic nature of aquatic habitats will be missed if data are not logged while engaging in other activities on the water.  This is non-dedication at its finest!

Paradise Lake Improvement Board (MI)

Contour Innovations has recently adapted the ciBioBase platform and pricing options to support the mapping initiatives of local government units, home owner associations, and improvement boards.  One of the most recent additions to this project has been the Paradise Improvement Board in Carp Lake, MI (Lower Peninsula) and we’re excited about it!*

The Paradise Lake Improvement Board (paradiselakeimprovementboard.com), through crowd sourcing and citizen science concepts, can now quickly determine the location and abundance of aquatic vegetation for management interventions and quantitative evaluation of the effectiveness of those techniques.   

There’s no technical expertise required!  Our biologists walked the volunteers of the PLIB through a demo account to demonstrate the key features for success with ciBioBase and discuss the recommended settings and collection techniques.    

 
 It’s this simple

Led by board member Catherine Freebairn, the PLIB purchased 2 Lowrance™ HDS units that will be set up as portable units for the lake group and an unlimited upload subscription to ciBioBase.com.  These units will be used to map Paradise Lake during dedicated mapping time as well as during pleasure cruises with passive collection.  With each minute on the water, the PLIB volunteers will be collecting vital statistics on aquatic vegetation, bathymetry, water temps, water volumes, and water clarity, all by hitting “log sonar” on their new HDS sonar units.  All of this data will be stored in their private online account. 
Aquatic biologist Ray Valley commented, “Protecting our lakes demands understanding of what lies beneath the surface and how its changing as a result of environmental changes and our responses to them.”
Using the innovative ciBioBase System, the PLIB has started building a historical database of their aquatic environment to monitor vegetation abundance and other important water quality characteristics over time.   They can now quickly determine the location and abundance of submerged aquatic vegetation for management interventions and quantitative evaluations of effectiveness of those techniques.  This database is the catalyst for efficient management today and in the future.  By gathering  this data each time someone is on the lake, the Board can crowd source the mapping effort and share information with their service providers for collaborative and objective decision making.  

“The PLIB has always shown a substantial passion for their lake and we feel that their early adoption of our powerful technology will be rewarded on many fronts,” said Contour Innovations’ CEO Matt Johnson.  “It’s very easy to work with groups like the PLIB who see the big picture in lake management and monitoring and want to see results.  They develop close relationships with their service providers and home owners to work hand-in-hand in understanding the best opportunities to reach their goals.  This is the first time that groups like this can use acoustics for accurate vegetation mapping and ciBioBase fits perfectly within their strategy,” he added.  

The PLIB will be working with their service providers (who will also have access to uploads and maps) to make important management decisions, monitor changes, and objectively evaluate if management interventions are having their desired effects.  With the support of all involved, including Contour Innovations’ own aquatic biologists, the future looks bright for Paradise Lake and anyone that enjoys all it has to offer!
 An Example of a Lake Mapped with ciBioBase
 Aquatic Vegetation Displayed in % BV (water column occupied by plants)

If you’re interested in finding out more about ciBioBase and how it can help your association or improvement district, please contact us and we’d be happy to set up a person demo for you with one of our biologists.  Please contact Jesse Amo for additional details:  JesseA@ContuourInnovations.com

For more information on the Paradise Lake Improvement Board please check out their website at paradiselakeimprovementboard.com.

*Contour Innovations does not release personal information about our customers.  We obtained permission from the PLIB before this media release.

Crowd Sourcing Lake Mapping

Natural Resource Managers and Climatologists have long recognized the critical importance of observer networks and volunteer citizen monitoring.   With citizen monitoring networks, Managers and Scientists acquire useful data for making more informed predictions and management decisions, while involved citizens gain an ownership stake in building the knowledgebase about the condition of ecosystems and the climate.

Citizen protocols for water quality (e.g., Secchi clarity) and meteorology (e.g., rainfall) data collection are largely objective and are becoming increasingly standardized throughout the nation.  As a result, comprehensive datasets are being merged at large geographic scales to assess the current status and trajectory of water resource and climate conditions.  Despite well-intentioned citizen programs to map and monitor aquatic plants in several US states, most are subjective and non-standardized.  Consequently, results will differ across surveyors, systems, and geographic regions.  This strongly limits the power and usefulness of data collected from these programs.   This is unfortunate because of the importance of aquatic plants for fish habitat and water clarity, and the vulnerability of lakes to invasive aquatic plants.

Contour Innovations has addressed this issue with ciBioBase and is poised to revolutionize citizen aquatic plant monitoring.

Objective data collection and analysis

Few others cover more water than citizens living on lakes.  Why not capture information about bottom conditions while on a pleasure cruise or fishing?  With only a modicum of planning, the lake could be divvied up among users to ensure consistent and uniform coverage.  By loading in a $10 SD card into the slot on a Lowrance HDS unit and hitting record while driving over areas of interest, lake citizens are well on their way to collecting important information on aquatic plant growth.  After a trip, citizens upload the recorded files to ciBioBase’s cloud-based servers which will trigger algorithms to automatically analyze bottom and plant signals, map the output and match it up with your sonar viewer (Figure 1).  Pretty maps? Absolutely! But also, objective statistical reports that summarize the plant growth conditions (e.g., percent cover, biovolume; Figure 2).  By sampling the same area over time, citizens can objectively monitor change as environmental conditions change.  Further, these efforts will provide objective benchmarks by which to evaluate watershed, shoreline, and in-lake management efforts. 
Figure 1. Automated mapping of bottom and vegetation signals matched up a high resolution DownScan sonar trip replay. 
Figure 2. Excerpt from ciBioBase automated statistical summary report.


Data that most closely corresponds to water quality, fish habitat, and nuisance conditions


Prior to ciBioBase, lake citizens, service providers, and natural resource agencies had little choice but to express plant growth in the lake as “abundant” or “sparse” with sophistication ranging up to digitally drawn maps around the outside of plant beds that they could see from looking over the side of the boat or from an aerial photo.  Anything that could not be seen with the naked eye or from an aerial photograph was ignored.  Quantification was limited to what could be pulled up with a rake and expressed as a presence/absence  metric of frequency of occurrence.
From a water quality and fish habitat perspective, these methods have left the fishery and water resource manager, lakeshore owner, and angler wanting.  Traditional plant assessment methods as described would give the same value to the strikingly contrasting environments depicted in Figure 3).  In the panel on the left, plants only occupy approximately 60% of the water column.  There are adequate hiding places for prey and room for predators to swim around in search of prey.  Plants are adequate to anchor sediments and prevent stirring of sediments that can make the lake murky.  Last but not least, a boat can easily pass through without disturbing the habitat.  Contrast this with the panel on the right.  Although the visual delineation or rake throw prescribed by traditionalists would give the same information on density as the panel on the left, fish habitat and water recreation conditions are strikingly different between the two environments.  In this simulated invasive aquatic plant community (e.g., Eurasian watermilfoil or Hydrilla) without any edge, predatory fish have difficulty finding prey, boat propellers are stopped in their tracks and outboard impellers imperiled!  Essentially, the differences described between the environments in Figure 3 can be summarized in the ciBioBase biovolume maps and statistical outputs.  Ask your service provider or local water resource manager how they measure aquatic plant growth conditions in your favorite lake and evaluate whether they stack up to what ciBioBase provides.
Figure 3.  Contrasting aquatic plant environments that are often represented equally in traditional assessment methods.  On the left is growth that typifies a diverse, native aquatic plant community as opposed to topped-out growth that typifies invasive plant communities.  By mapping biovolume (percent of water column occupied by vegetaton), ciBioBase distinguishes the differences between these plant communities.
Centralized database – Apples to Apples

All data uploaded to ciBioBase are processed uniformly in a centralized database and made available to subscribers in a private organizational account.  Data from Lake Minnetonka in Minnesota can be compared with data from East Lake Tohopekaliga in Florida or data from Esthwaite Water in the UK and comparisons will be apples to apples.  The centralization feature of ciBioBase comes with these tangible benefits as well as intangible ones like fostering greater collaboration between groups interested in aquatic resource conservation.
Merged uniform outputs from multiple surveyors

A new buzzword has been entering the vernacular of natural resource managers called “precision conservation” brought on by advances in aerial photography, lasers (LiDAR), automated sensors, and greater computing power.  We can now identify miniscule areas on the landscape that are sources of runoff and pollution and strategically target those areas to install “Best Management Practices” or BMP’s like rain gardens or grit chambers.  However, thus far the dialog surrounding precision conservation has largely been terrestrial.  ciBioBase is bringing precision conservation to lakes through its merge trips function (Figure 4).
As ciBioBase account managers our users can compile trips from subscribers within their  organization to create a highly precise map of bottom and vegetation (Figure 4).  This division of labor describes the essence of this blog’s title whereby the collective efforts or intelligence of the many are more powerful than any one individual.  No one person is willing or able to track how the lake is changing from day to day as runoff from an increasingly common 4-in rain comes streaming (literally) in, but a dozen active citizens might.  The result is a near real-time data feed on changes in lake conditions that will greatly inform how the lake responds to environmental change, where to target conservation efforts, and whether implemented management policies are producing their desired effects.
Figure 4. Multiple citizens in the same organization can work together by merging trips, thereby creating the most accurate bottom and plant map on the face of the planet!

Verification of ciBioBase Depth Output

At Contour Innovations we are our own skeptics and constantly perform verification investigations of BioBase output for accuracy. 

As Chief Aquatic Biologist, I’ve been comparing bottom depths sampled with a survey rod with its corresponding depth derived from the automated depth outputs from the BioBase System.  In the figure below depths from Elk Lake (Clearwater Co. MN) are color coded from 1 – 50 ft with blue becoming more intense as depth increases.  The circles are depths recorded with a survey rod while the squares are ciBioBase depths.  Below is one visual representation of the high agreement between true depths and BioBase depths. This visual shows the symbol color agreement demonstrating accuracy in the output! 

True depth data come courtesy of Minnesota Dept. Natural Resources Fisheries Research Biologist Donna Dustin and are copyright of Minnesota DNR.