BioBase Paper Published: Accuracy and Precision of Low-Cost Echosounder and Automated Data Processing Software for Habitat Mapping in a Large River

We are grateful to the aquatic research community who continue to verify and validate Consumer Sonar Technologies (Lowrance) and BioBase automated mapping platform to produce scientifically valid outputs that benefit aquatic conservation.  We are excited to see the recent publication of research out of the University of New Brunswick that evaluated the accuracy and precision of Lowrance and BioBase’s EcoSound depth and vegetation outputs.  The research is published in the open access journal Diversity and can be downloaded here. Below is the abstract

Abstract
The development of consumer hydroacoustic systems continues to advance, enabling the use of low-cost methods for professional mapping purposes. Information describing habitat characteristics produced with a combination of low-cost commercial echosounder (Lowrance HDS) and a cloud-based automated data processing tool (BioBase EcoSound) was tested. The combination frequently underestimated water depth, with a mean absolute error of 0.17 ± 0.13 m (avg ± 1SD). The average EcoSound bottom hardness value was high (0.37–0.5) for all the substrate types found in the study area and could not be used to differentiate between the substrate size classes that varied from silt to bedrock. Overall, the bottom hardness value is not informative in an alluvial river bed setting where the majority of the substrate is composed of hard sands, gravels, and stones. EcoSound separated vegetation presence/absence with 85–100% accuracy and assigned vegetation height (EcoSound biovolume) correctly in 55% of instances but often overestimated it in other instances. It was most accurate when the vegetation canopy was ≤25% or >75% of the water column. Overall, as a low-cost, easy-to-use application EcoSound offers rapid data collection and allows users with no specialized skill requirements to make more detailed bathymetry and vegetation maps than those typically available for many rivers, lakes, and estuaries.

EcoSound vs Manual Measures Vegetation Helminen et al 2019

New BioBase Website including new DIY GIS tutorials

We’re excited to announce the launch of the new biobasemaps.com website! You’ll find an image-rich professional look and feel as well as information segmentation into solutions and features that speak directly to the markets we serve (Aquatic Plants, Fisheries, Water Resources, Private Ponds, Coastal).

New visitors to biobasemaps.com will also see more information about our optional GIS Services that can take your BioBase maps and tailor them to your precise needs regarding image size, contour interval, custom legend, logos, etc.

GISServices_EMULAKE200DPI
Sample custom map created by our GIS staff from BioBase EcoSound outputs. 

Dabbling in GIS? We can help you get started in QGIS

Many of you also come to us with questions about how to do more with your BioBase outputs (e.g., custom contouring, water volume calculations, spatial data analyses). To empower you to fully leverage the potential of BioBase outputs we have prepared several step-by-step QGIS tutorials to get you the outputs you require for your work. See our Support Resources page for these tutorials along with other useful self help resources

Networking 3rd Party GPS/GNSS into Lowrance

Ray Valley

Aquatic Biologist and BioBase Product Expert

I frequently get inquiries from current and prospective BioBase users about the accuracy of consumer-grade Lowrance GPS and whether survey-grade 3rd party receivers capable of differential correction (DGPS) or receiving positions from multiple satellite constellations (Global Navigation Satellite System – GNSS) could be used with Lowrance and processed with BioBase.

The first question about accuracy prompted a test in March of 2013 with a Lowrance HDS tested side-by-side with a Trimble GeoXH.  I was pleased to find less than 1m deviation on average from post-processed Trimble DGPS positions.  One meter accuracy and precision is typically sufficient for most boat-based mapping applications. Still, prerequisites for some projects require DGPS, and there are a number of BioBase users who have and still would prefer to have DGPS generated positions to use when logging trips. Thus, I was interested in exploring the capabilities of networking positions from a third-party receiver into a Lowrance HDS.

Continue reading “Networking 3rd Party GPS/GNSS into Lowrance”

Mapping Hidden Channels with Genesis Live

River channel thalwegs (the line of lowest elevation within a valley or watercourse) are often dynamic, and sometimes hidden features of large river systems.  Especially low slope or impounded systems.  The thalweg is a critical geomorphological feature of river and reservoir systems and affects everything from sediment transport, to fisheries habitat, to algae or invasive plant control.

Thus a good bathymetric contour map is a necessary pre-requisite for effective river and reservoir management.  Here, we walk you through how to use new real time technologies (C-MAP’s Genesis Live) to produce smooth, precise, and accurate maps of hidden river thalwegs all within one trip to the site and with automated post-processing with BioBase’s EcoSound.  We’ll use an annotated image gallery to take you through this process.

Continue reading “Mapping Hidden Channels with Genesis Live”

Training EcoSat Vegetation Classifications: User tips

What is EcoSat?
EcoSat delivers a one-of-it’s-kind semi-automated cloud processing of very high resolution satellite imagery to map nearshore vegetation and coastal benthic habitats.  EcoSat uses the latest multi-spectral imagery from reputable providers such as Digital Globe (World View 2,3 and 4), Airbus Defence and Space (Pleiades), and ESA’s Sentinel program and industry standard image processing techniques.  Sophisticated Amazon Web Service cloud infrastructure rapidly processes imagery, creates reports and imagery tiles, and delivers detailed habitat maps to user’s BioBase dashboard where it can be analyzed and shared.  Average turnaround time from imagery tasking order to delivery of results is 60 days.  The rapid and standard processing methods are allowing entities like the Florida Fish and Wildlife Conservation Commission to establish regular monitoring programs for emergent vegetation.  The extremely long and expensive one-off nature of conventional remote sensing mapping projects using non-repeatable tailored techniques has prevented natural resource entities from assessing the degree that habitats are changing as a result of environmental stressors such as invasive species invasions and climate change.

Continue reading “Training EcoSat Vegetation Classifications: User tips”