Mapping Hidden Channels with Genesis Live

River channel thalwegs (the line of lowest elevation within a valley or watercourse) are often dynamic, and sometimes hidden features of large river systems.  Especially low slope or impounded systems.  The thalweg is a critical geomorphological feature of river and reservoir systems and affects everything from sediment transport, to fisheries habitat, to algae or invasive plant control.

Thus a good bathymetric contour map is a necessary pre-requisite for effective river and reservoir management.  Here, we walk you through how to use new real time technologies (C-MAP’s Genesis Live) to produce smooth, precise, and accurate maps of hidden river thalwegs all within one trip to the site and with automated post-processing with BioBase’s EcoSound.  We’ll use an annotated image gallery to take you through this process.

Continue reading “Mapping Hidden Channels with Genesis Live”

BioBase is now Metric compatible!

Ok. It’s long overdue. But, better late than never! Much to the delight of non-US users, now you can choose whether BioBase EcoSound outputs are in metric or imperial units.

AccountPage_Screenshot
Click on “My Account” to select the desired units.
ShobyLake
Metric output contoured in 0.5 m intervals. Contour detail is autodecluttered based on your zoom level in BioBase.

Wish to change units of an already processed map?

If you processed a trip with one unit setting and wish to recontour the map in a different unit, simply change the unit in our Account Profile and then go back to the trip of interest and reprocess

TripReprocessing
After selecting a new unit, reprocess the map to contour in the new units

BioBase Paper Published: Estimation of paddlefish (Polyodon spathula Walbaum, 1792) spawning habitat availability with consumer-grade sonar.

We’re excited to see another publication demonstrating another novel use of BioBase EcoSound technology for Fisheries Science. For a complete list of pubs see hereContact us to get a copy of any of these publications

Estimation of paddlefish (Polyodon spathula Walbaum, 1792) spawning habitat availability with consumer-grade sonar
 
Jason D. Schooley
Oklahoma Department of Wildlife Conservation
 
Ben C. Neely
Kansas Department of Wildlife, Parks, and Tourism
 
Journal of Applied Icthyology 2017
 
Summary
The paddlefish (Polyodon spathula Walbaum, 1792) is a springtime migrant that requires discrete abiotic conditions such as water temperature, discharge, and substrate composition for successful spawning and recruitment. Although population declines have prevailed throughout much of the species range, Oklahoma paddlefish are abundant and support popular recreational snag fisheries – most notably in Grand Lake. This stock utilizes the Grand Lake’s two primary headwaters, the Neosho and Spring rivers, with only episodic recruitment success. However, relationships between suitable spawning habitat and water level have not been evaluated in this system. Using consumer-grade sonar equipment, this study identified and quantified hard river substrates (such as cobble and bedrock) and investigated proportional habitat availability at a variety of simulated river conditions. Sonar data were used to construct 49-m2 grids of depth and bottom hardness (H) ranging from 0.0 (soft) -0.5 (hard). Ground-truthing samples of bottom composition were collected with a grab sampler and by visual identification. Substrate types were pooled into two categories: soft substrates (H < 0.386) and spawning substrates (H ≥ 0.386) allowing for estimation of available spawning habitat in each river. Spawning habitat comprised 69% of total available habitat for the Neosho River (6.5 ha/km) and 58% for the Spring River (7.9 ha/km). Estimated spawning habitat was simulated over a range of river stages and predictive models were developed to estimate proportional spawning habitat availability (PHA). Although the Spring River contains more concentrated spawning habitat in closer proximity to Grand Lake, the Neosho River contains a greater quantity over nearly twice the distance to the first migration barrier, has a larger watershed, and demonstrates greater PHA at lower river stages. Model results were validated in context of known high and low recruitment years, where a greater frequency and duration of days with ≥90% PHA were observed in good recruitment years, particularly in the Neosho River. In total, results suggest the Neosho River has greater value for paddlefish reproduction than the Spring River. Research-informed harvest management will remain critical to the conservation of wild-recruiting stocks for continued recreational use in Oklahoma.
Average Neosho and Spring river substrate hardness index (H) for substrate classification groups across pooled methods (grab samples and visual samples). Cobble/Rock includes fine, medium, and coarse cobble pooled with bedrock. Substrates represented by H ≥ 0.386 were regarded as paddlefish spawning habitat. Sample size is noted at the base of each column and error bars indicate 95% confidence intervals
Schooley JD, Neely BC. Estimation of paddlefish (Polyodon spathula Walbaum, 1792) spawning habitat availability with consumer-grade sonar. J Appl Ichthyol. 2017;00:1–9. https://doi.org/10.1111/jai.13565

Guest Blog: Correlations between EcoSound Biovolume and Aquatic Plant Biomass

Andrew W. Howell and Dr. Robert J. Richardson
 
North Carolina State University; Dept. Crop and Soil Sciences
 
Why do we want to sample submersed vegetation biomass using sonar?

Invasive aquatic plants, such as non-native hydrilla (Hydrilla verticillata), negatively impact waterway systems in the southeastern United States and on a global scale. Often, these aquatic weed species impede recreational activities, power generation, and disrupt native ecological systems. Costs associated with aquatic weed management include expenses accompanied with monitoring, mapping, and implementing control measures. Prompt detection and accurate mapping of submersed aquatic vegetation (SAV) are critical components when formulating management decisions and practices. Therefore, SAV management protocols are often reliant upon the perceived extent of invasion. Traditional biomass sampling techniques have been widely utilized, but often require significant labor inputs, which limits repeatability, the scale of sampling, and the rapidness of processing. Advances in consumer available hydroacoustic technology (sonar) and data post-processing offer the opportunity to estimate SAV biomass at scale with reduced labor and economic requirements.

The objectives of this research were to document the use of an off-the-shelf consumer sonar/gps chartplotter to: 1) describe and characterize a relationship between hydroacoustic biovolume signature to measured hydrilla biomass; 2) develop algorithm for on-the-fly assessment of hydrilla biomass from interpolated biovolume records; 3) define seasonal hydrilla growth patterns at two NC piedmont reservoirs; and 4) create a visual representation of SAV development over time. From these objectives, the expected outcome was to describe a protocol for passive data collection while reducing the economic inputs associated with labor efforts involved in biomass sampling and post-processing evaluations. In our research, a Lowrance HDS-7 Gen2 was utilized to correlate biomass from monospecific stands of hydrilla within two different North Carolina piedmont reservoirs using BioBase 5.2 (now marketed as EcoSound – www.biobasemaps.com), cloud-based algorithm to aid in post-processing.

Continue reading “Guest Blog: Correlations between EcoSound Biovolume and Aquatic Plant Biomass”

C-MAP PARTNERS WITH EOMAP TO RELEASE ECOSAT

FOR IMMEDIATE RELEASE
June 22nd 2017

Emanuela Ferina
Global Marketing Manager, C-MAP
emanuela.ferina@c-map.com

Ray Valley
Aquatic Biologist & Biobase Product Expert 
ray.valley@c-map.com 

Building on the Power of the BioBase Cloud Mapping Platform, New Product Generates Full Inventories of Shallow Water Habitats

C-MAP®, a leading supplier of digital navigation products to the maritime market, in partnership with a global leader in remote sensing services, EOMAP GmbH & Co KG, announced today the launch of EcoSat.
A new semi-automated wetland and coastal habitat mapping product that is part of the BioBase Cloud Mapping Platform, EcoSat uses the unique reflectance properties of vegetation and sea bottoms from high resolution satellite imagery and creates distinct polygon objects with spatial properties like area and perimeter. EcoSat’s power is doubled when combined with its sister product EcoSound which uses sonar and GPS data files to map depth and submerged vegetation. EcoSat complements BioBase’s core functionality of submerged habitat mapping with sonar with new capabilities to inventory habitats in vast nearshore areas of aquatic environments. Aquatic habitat managers across the globe can use EcoSat to quickly assess and monitor changes in wetland complexes, shallow lakes, tidal estuaries and marshes, and benthic habitats. EcoSat will also be an invaluable tool for the assessment and monitoring of invasive aquatic plants. The Florida Fish and Wildlife Research Institute (FWRI) is currently using EcoSat and EcoSound to generate full aquatic vegetation inventories in high profile Florida lakes.
“The combination of the latest habitat image classification procedures and the high-performance of the BioBase Cloud environment brings significant benefits to all users that don’t have access to large data processing capacities,” said Marcus Bindel, EOMAP data analyst.
Leveraging the expertise of a team of remote sensing experts at EOMAP, EcoSat rapidly processes raw satellite imagery and creates unique habitat classifications (e.g., polygons in a shapefile). Shapefiles and raw imagery – that are often hundreds of megabytes – are uploaded and processed by BioBase’s powerful cloud-based servers. Shapefiles and imagery are stored in a user’s or organization’s private online account for easy access and sharing. BioBase customers can interact with these detailed EcoSat files simply with any internet-enabled device. Users can also export custom charts of the EcoSat classifications to their Lowrance or Simrad chartplotter and navigate directly to a habitat of interest.
“BioBase is a first-of-its-kind, off-the-shelf cloud solution for organizations and businesses that need full aquatic habitat inventories quickly,” said Greg Konig, head of product development, C-MAP. “Prior to BioBase automated mapping technologies, aquatic managers and researchers would spend countless hours at high costs just to produce a map. But not anymore.”
For more information on C-MAP Light Marine and Commercial products, visit www.c-map.com. For more information about EcoSat and the BioBase Cloud Mapping Platform, visit www.cibiobase.com.
About C-MAP:
C-MAP is a world-leading provider of marine information with products ranging from electronic navigational charts to fleet management, vessel and voyage optimization. C-MAP offers the world’s largest marine navigation digital chart database, helping customers to address the complexity of maritime operations through integrated, intelligent information systems. For more information, visit www.c-map.com.
Processed polygons of emergent vegetation beds in Lake Tohopekaliga, FLfrom high resolution satellite imagery combined with submerged vegetation mapped with BioBase – EcoSound

Download automatically created Lowrance or Simrad Chart files from EcoSat and verify classifications directly from your watercraft  

Interpreting bottom hardness in shallow lakes and ponds: digging deeper into the data

BioBase’s EcoSound bottom composition (hardness) algorithm has become quite popular for researchers and lake/pond managers to determine where sedimentation from the watershed may be occurring.  However, interpreting sonar returns in shallow environments (e.g., less than 7 ft or 2 m) with off-the-shelf sonar is challenging, especially if aquatic vegetation is present.  Each situation is different and the objective of this blog is to inform you of how to interpret your EcoSound map in situations when you encounter counter intuitive bottom hardness results.

Here are some high level points to remember.

Continue reading “Interpreting bottom hardness in shallow lakes and ponds: digging deeper into the data”

Helpful Resources for Getting Started with BioBase

BioBase is a powerful data collection tool for aquatic environments. To get the best results with BioBase – EcoSound, it is important to use proper data collection and management procedures. This post contains links to the resources that will help you get started with BioBase and get great data.

Our quality control team reviews every uploaded trip and looks for glaring issues with the trip like evidence of a slanted transducer, signal loss, poor signal quality. They may email you if they notice any significant issues with your trip, and suggest ways to fix the issue or ways to improve data quality before logging again. The quality control process may cause data edits and offsets to be lost and can “break” merges. Please allow one business day for quality control before applying these changes to your trips, or check the quality control review status by viewing a trip’s report. If there is a quality control reviewer’s name on the report, the trip has been reviewed. You can also see any comments that were not emailed to you on the report.

It is critically important to keep your Lowrance software updated. Software updates can be found here. Outdated software can result in inaccurate or lost data!

Our YouTube channel has many helpful videos, including data editing tutorials.

This post gives an overview on how EcoSound works along with some answers to frequently asked questions that many new users have.

The EcoSound Quick Start Guide shows recommended settings to use while logging sonar. Print this guide and keep it on your survey boat.

The EcoSound Support and Resources page has links to the EcoSound Full Operator’s Guide as well as several tutorials, including guides for using EcoSound data in QGIS.

If you ever need any assistance, contact the BioBase support team at info.biobase@navico.com

The BioBase you’ve come to love is now EcoSound!

What used to be known as BioBase will now be called EcoSound; a product name that better describes its function – using sound to characterize ecological environments.  We’re not getting rid of the BioBase name; it’s just going to mean a lot more!  Without changing function of the system, EcoSound uploads and merges will still be housed and displayed in a BioBase dashboard and on BioBase servers.  Soon BioBase will be getting an online face lift and users will have an easier time navigating to the information they need when they need it.  You’ve requested some changes and development is underway!

BioBase: The cloud platform re-positioned to support more than just sonar processing
With the move to C-MAP, BioBase is receiving a renewed focus to deliver the aquatic industry new and improved automated tools for the assessment of aquatic habitats.  In addition to renaming our sonar processing service EcoSound, the BioBase brand is being elevated to represent its primary role as a powerful cloud processing platform and a dashboard for visualization and analysis of a wide variety of spatial aquatic data.  BioBase will soon represent more than just an automated sonar mapping system.  More about this in a separate announcement coming soon!

New BioBase Logo.png

 

Consumer Sonar for Bottom Mapping: Updated Reference List

Another FAQ we get is wondering if there are published studies using BioBase technology? There are many legacy applications on which the BioBase technology is based. Further, now that a sufficient passage of years has accumulated to support the “research to publication” cycle, we’re happy to share several BioBase-specific studies published in the peer-reviewed literature.  This is far from an exhaustive list and we’ve intentionally left out the niche growth in consumer side-scan technology for creating habitat maps.  If there are good published papers you know of that are not on this list, please share in the comments.

Continue reading “Consumer Sonar for Bottom Mapping: Updated Reference List”

FAQ of the year: Does BioBase EcoSound Map Sediment Depth?

Thanks to advances in physical, chemical and biological technologies and funding that are focused on reducing sedimentation or muck depth in waterways, many water resource practitioners are eager to determine how much sediment is in a waterway of interest and how much could be removed. As such, we frequently are asked: “Will BioBase tell you how deep the sediment is?”

Continue reading “FAQ of the year: Does BioBase EcoSound Map Sediment Depth?”